本論文提出一個適合在高叢集的Fuzzy c-means分群演算法硬體架構,同時對分群質量中心點和訓練向量作管線化架構(pipeline),可以獲得更低的硬體資源消耗和更高的計算速度。此外,合併以往迭代更新權重矩陣(membership coefficient matrix)以及質量中心成為單一的更新步驟,可以避免使用大量的儲存空間。
最後本論文所提出的硬體架構會在以FPGA為基礎的可程式化系統晶片設計(System On a Programmable Chip,SOPC)之平台上作實際的效能測試。由實驗的結果可知,本架構具備較低的計算複雜度、較低的硬體資源複雜度以及更高的效能。