學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
1 results
Search Results
Item 基於多核學習之球鞋喜愛度預測方法(2014) 楊少廷在此研究中,我們藉由多個不同類型的資訊來描述球鞋產品,以達到預測消費者對於球鞋喜愛度之目的。透過使用Sole Collector球鞋網站上所提供之資料建置了1913雙球鞋之資料庫,資料包含了球鞋圖片、名稱、及價錢等,並利用其當作訓練集與測試集。對於球鞋產品,本工作做了不同面向的描述,擷取多種特徵,並利用機器學習中的多核學習(Multiple Kernel Learning, MKL)方法結合多個適合各自特徵空間的前計算核(Pre-computed Kernel),藉由這些前計算核的線性組合訓練出球鞋喜愛度分數預測模型,透過新球鞋之特徵資訊當作輸入,輸出球鞋受消費者喜愛度的預測分數。實驗部分則提供了多核學習與支持向量回歸(Support Vector Regression, SVR)兩方法比較,結果顯示相同核數下,使用後期融合方法(MKL)較前期融合方法(SVR)在預測球鞋喜愛度問題上,有較佳的關聯性。而使用前計算核廣泛上擁有較徑向基函數核(Radial basis function kernel)更好的表現。