Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
理學院
資訊工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.李聿宸
Subject
1
search.filters.subject.convolutional neural network
1
search.filters.subject.deep learning
1
search.filters.subject.face recognition
1
search.filters.subject.人臉辨識
1
search.filters.subject.卷積神經網路
Show more
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2020
1
Has files
1
No
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.李聿宸
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
基於CNN對於多人環境進行人臉辨識之研究
(
2020
)
李聿宸
Show more
人臉辨識於現今社會為熱門的議題,每個人皆有獨一的臉部特徵,相較於密碼或是個人證件等傳統的識別方式,人臉辨識既不需要隨時攜帶實體證件也不用擔心忘記密碼。當經由辨識而取得臉部影像後,就能夠藉由不同的臉部特徵與人臉資料庫進行比對來驗證身分。 本研究以設置於教室上方的攝影機拍攝課堂環境,取得之臉部影像解析度較低,因此人臉特徵較不突出,且亦有光線亮度不均勻以及臉部偏移等問題,導致傳統人臉辨識效果不佳。本研究運用YOLOv3結合深度學習的人臉偵測技術取得個人的臉部影像,並搭配卷積神經網路 (Convolutional Neural Network)訓練合適的模型進行人臉辨識,對於20 × 20以上之低解析度且包含不同角度的臉部影像,皆能達到97%以上的辨識準確率。由於人臉長時間下來會有些許的變化,根據實驗結果,經由四個月後之臉部影像仍能維持94%的辨識準確率。
Show more