Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
理學院
資訊工程學系
學位論文
學位論文
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73912
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.李兆珩
1
search.filters.author.Li, Zhao-Heng
Subject
search.filters.subject.強化式學習
1
search.filters.subject.none
1
search.filters.subject.主動學習
1
search.filters.subject.推薦系統
Browse subject tree
Date
Start
End
Submit
2020
1
Has files
1
Yes
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.李兆珩
×
Subject: search.filters.subject.強化式學習
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
協助動態節目導覽推薦系統訓練資料增量之研究
(
2020
)
李兆珩
;
Li, Zhao-Heng
Show more
本研究為了解決使用主動式學習的推薦系統可能面臨到因為使用者使用系統的頻率不高,而造成資料收集困難的問題,我們希望透過使用者點選的歷史資料,進行資料增量,藉由多次的觀看紀錄,也就是使用者行為資料,產生相應且大量的模擬資料,來加速使用Active Learning的推薦系統收集資料的速度,減少時間資源的浪費。 本論文以強化式學習的Policy Gradient與主動式學習結合的動態節目導覽推薦系統為例來做資料增量。我們的推薦系統同時考慮使用者的觀看節目類別的喜好,工作日與例假日,觀看時間等,因此為了有效率的產生符合一般人習慣的模擬訓練資料,我們試圖產生情境式的模擬資料來訓練類神經網路。藉由對多種情境作情境增量,我們得以解決主動式學習所面臨到需要花費大量時間收集資料的問題。
Show more