學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
6 results
Search Results
Item 融合雷射掃描及視覺資訊之TEB演算法應用於無人搬運車防碰撞策略開發(2023) 徐培恩; Hsu, Pei-En隨著無人搬運車(AGV)在倉儲、物流和製造業等領域的普及,使用機器人在運輸和操作物品方面的效率和安全性受到越來越多的關注。然而,當AGV操作場域複雜或不確定環境時,其運動控制和防碰撞設計仍然存在挑戰。為了實現避障,本論文採用Timed-Elastic-Band (TEB)演算法,在多個選擇路徑中選擇最佳路徑,並使用動態控制策略實現平順移動。此外,針對雷射掃描無法有效偵測之空間障礙物,本論文整合影像辨識來輔助TEB演算法的防碰撞策略,以增強無人搬運車進行導航任務的運動控制和避障能力。透過攝影機即時偵測AGV前方的環境影像,並利用機器學習技術識別空間障礙物的相對位置資訊,透過座標轉換將空間障礙物座標投影在代價地圖上,使TEB局部路徑規劃器可以將其納入計算避障路徑。本論文所開發的防撞策略先於ROS Stage模擬驗證後再將其實現於AGV平台進行實車驗證,透過融合影像偵測資訊與雷射掃描資訊的TEB避障演算法,經由實驗結果驗證能在導航過程中安全完成障礙物閃避。本論文採用之AGV平台及測試場域與業界緊密合作,顯示所提出防撞策略已成功整合於導航軟體架構與實際產業上之需求潛力。Item 植基於類神經網路之車型機器人路徑規劃(2010) 李訓欣; Shiunn-Shin Lee近年來機器人的研究逐漸受到重視,而隨著機器人科技的進步,機器人的發展趨勢從單一機器人獨立完成任務演化成多機器人團隊分工合作完成複雜的任務。而在多機器人處理複雜工作時必須考慮到路徑規劃的問題,但傳統的路徑判斷中大多在已知固定環境作精準的路徑判斷。 本研究旨在利用倒傳遞類神經網路進行路徑規劃事前的學習工作,以機器人自走車配置的超音波感測器來讀取環境中的距離和方向。當感測器取得環境的幾何特徵,即將相關資訊匯入倒傳遞類神經網路進行環境的辨識。本研究共採用7種基本環境類型數據,供自走車機器人作路口判斷。實驗結果證實判斷準確。Item 並聯式機械手臂之運動控制器設計與實現(2019) 游程瑞; Yu, Cheng-Jui近幾年來,自動化產業的要求日漸上升,目前已有多種類型的多軸系統需要控制技術來提升其產業上的效能。非均勻有理B型曲線(Non-Uniform Rational B-Splines,NURBS)被廣泛應用於電腦輔助設計或數值加工控制,其概念是藉由調整控制點和權重值來實現各種曲線模型之擬合設計。由於傳統的自動化設備配置的控制系統容易遇到多軸同步與即時性的問題,以及受限於配線繁雜與外界雜訊干擾,EtherCAT通訊協定便因此產生。EtherCAT架構是透過簡易封包傳輸方式、硬體設計才能夠在多個裝置中進行高速傳輸,同時保證傳送過程不會因為延遲而遺失封包資料。本論文以運動控制平台為基礎,發展出具有高精度與穩定性之運動控制系統於並聯式機械手臂。並聯式機械手臂是由永磁式交流伺服馬達所組的結構,其中並聯式機械手臂在運動控制的過程中必須考慮到其架構設計與工作空間,因此運動控制設計為此研究並聯式機械手臂之重要議題。首先,在並聯式機械手臂上建立EtherCAT架構的工作環境,並透過NURBS補插器技術對並聯式機械手臂進行任意運動軌跡規劃,最後藉由人機介面可自行調整控制點與權重值,以便設計所需要之運動軌跡,結合NURBS補插器與EtherCAT架構以便提高控制精度與縮短控制時間。Item 使用分散式計算之室內環境探索機器人(2017) 魏楷燁; Wei, Kai-Yeh本論文提出一台以機器人作業系統(ROS)架構下 Gmapping結合環境探索和路徑規劃之機器人的設計與實現,使機器人能在未知環境中自主運用環境探索演算法、路徑規劃演算法和運動學控制器探索環境,並在探索環境的同時使用 Gmapping 建置二維平面地圖,使之完成自主探索環境並建置地圖的功能。環境探索演算法中使用的是本論文提出的「分群式邊界偵測法」,使機器人能先把周圍環境探索完畢後才繼續探索新的環境。而路徑規劃使用的的是本論文提出的「改良權重A*演算法」,能使機器人避開障礙物且規劃完整的路徑。由於本實驗室想設計一個輕量化的設備來取代笨重的電腦,但速度卻不會比電腦慢太多的方法,所以採用機器人作業系統(ROS)架構實作在多塊 Udoo Quad 板上,其分散式架構剛好符合要求,能把系統的架構分散開來,使單一程序可以完全使用一個 Udoo 板的效能。為了驗證系統的性能與效能,本論文利用室內環境進行諸多實驗,而由實驗結果可知,本論文設計的機器人導航系統確實能達到分散式處理之輕量化之導航與探索功能的目的。Item 跨樓層文件傳遞機器人之設計與實現(2016) 龔彥丞; Kung, Yen-Cheng本論文提出一擁有跨樓層文件傳遞功能之機器人的設計與實現,使輪型機器人能夠在一已知地圖的大樓中自主導航,並搭配影像及機械手臂,使機器人能夠搭乘電梯上下至目的地樓層,再配合開發於手機上的應用程式,讓使用者可以藉由使用者介面傳遞目的地資訊給機器人,使其前往目的地。針對定位演算法,本文提出「嵌設錯誤修正向量之蒙地卡羅定位法」,使傳統的蒙地卡羅定位的感測器資訊不僅僅只用來判別粒子的好壞與否,更可進一步得知下一刻時間的參考向量。路徑規劃部分本文提出了「改良型A*混合多重骨架路徑規劃演算法」,以改善傳統骨架繞路的問題,並搭配搜尋上下載點的策略,使其規劃出一條遠離障礙物並安全的路徑,不管在路徑長度還是規劃時間都較傳統A*混合骨架演算法來得優異。在電梯按鈕辨識部分,本篇論文使用輪廓提取的方式,對建立好的模組進行比對,使機器人得知電梯按鈕的座標。手臂控制方面,主要是搭配單攝影機,將三維正逆向運動學的數學模型簡化為二維,可使較不精準的機器手臂如同人類的手臂一樣,朝向按鈕伸直,並觸碰按鈕。最後再將使用者介面實現於Android智慧裝置上,搭配TCP/IP通訊,以及語音辨識工具,讓使用者可以用簡單的使用手機應用程式,命令機器人前往目的地。本論文最後以多個實驗結果驗證所提出之方法的可行性。Item 結合環境探索策略與路徑規劃之適應計算性同時定位與建圖(2016) 龔大瑋; Kung, Da-WeiFastSLAM是目前解決同時定位與建圖最主要的方法,其中FastSLAM 2.0隨著地標的不斷增加,量測資訊與粒子內所存地標的比對次數也會大幅增加,導致計算效率降低。因此本論文提出一改良方法,稱之為「適應性計算之同時定位與建圖演算法(ACSLAM)」,在一開始的粒子更新階段係與FastSLAM 1.0相同,只採用里程計資訊,接下來在更新地標的階段,先選擇與量測資訊有最大相似性的地標先更新粒子狀態,再來更新地標。並且在重新取樣的階段使用「有效取樣大小」的值來決定下一次演算法的粒子數目,透過此方法來提高計算效率以及定位的精確度。然而單純運用SLAM演算法並無法進行環境探索與路徑規劃,因此本論文將ACSLAM整合基於邊緣偵測(frontier-based)之環境探索方法以及向量場路徑規劃,使機器人能完全自主性的執行任務。在實作方面,我們選擇了Pioneer 3-DX機器人作為移動平台,並搭配SICK感測器來偵測周圍環境,實驗結果證明,本方法可以使機器人在完全未知的環境下,自主地將環境探索完畢,並且完成建圖定位以及路徑規劃的任務。