學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73890
Browse
1 results
Search Results
Item 基於最佳化演算法的類神經網路剪枝策略(2021) 鐘暘; Chung, Yang隨著深度學習領域不斷的進步,類神經網路的架構比起以往擁有更多的參數量和記憶體的使用量,相對地對於硬體的要求也就更高。如何在有限的記憶體和硬體效能中擁有差不多的辨識效能也成為需要被關注的問題之一,而網路剪枝則是最直接能夠解決參數量過大問題,將網路中不必要的參數刪除,就能夠省去大量的記憶體空間。過去在網路剪枝當中,通常的策略都是將較小的權重刪除。這些網路剪枝方法的主要策略都是假設網路裡較小的權重,對於網路本身的影響較小,而可以被捨棄掉。但是我們認為這個假設對於神經網路而言並不是絕對的。在本篇論文中我們假設小權重也有可能會是重要權重的可能性,我們提出一個最佳化的剪枝策略,在剪枝時不只留下較大權重,還會留下由最佳化策略所挑選出的較小權重,能證明保留網路中重要的較小權重,有益於剪枝網路的準確率, 讓剪枝網路能夠在低參數量和高準確度中取得最佳的權衡。實驗結果說明在相較於只留較大權重的做法,透過最佳化的方法留下的較小權重,在相同的剪枝率網路會有更高的準確度。