學位論文

Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73900

Browse

Search Results

Now showing 1 - 5 of 5
  • Item
    利用高解析度大氣模式與CMIP6高解析度氣候模式探討TC頻率與破壞性之現今模擬與未來變化
    (2023) 陳冠杰; Chen, Kuan-Chieh
    本研究利用高解析度大氣與海氣模式,系統性評估模式模擬西北太平洋TC (Tropical Cyclone)活動之表現,及推估未來溫室氣體濃度為CMIP5(Coupled Model Intercomparison Project 5)中的RCP8.5 (Representative Concentration Pathways 8.5)與CMIP6中的SSP5-8.5 (Shared Socioeconomic Pathways 5-8.5)暖化情境下,近未來(2021-2050)與21世紀末(2075-2099)西北太平洋TC活動及登陸東亞沿岸地區之變化,並利用GPI(Genesis Potential Index)與SSE (synoptic-scale eddy)能量診斷等工具,分析TC變化機制。結果顯示25~50公里高解析度大氣與海氣模式均可以模擬現今氣候TC生成與軌跡頻率。然而,模式仍低估TC平均最大強度及強烈TC數目,其中海氣模式更低估TC強度。經由SSE能量診斷分析,顯示ISO(Intraseasonal Oscillation)與SSE尺度交互作用,在TC強度增強過程中,扮演重要的角色。海氣模式模擬ISO提供顯著較少的能量給TC發展。ISO南側較弱的水氣通量,較不利TC潛熱釋放,TC可用位能轉換成較少的TC動能,限制TC強度發展。高解析度氣候模式有助於TC活動模擬表現。高解析度海氣(大氣)模式推估在CMIP6 SSP5-8.5 (CMIP5 RCP8.5) 暖化情境下,近未來(2021-2050) (21世紀末(2075-2099))的TC生成數目減少4.3%(50%),強度增強0.8%(14%),及伴隨降雨增加5.8%(35.4%)。TC登陸東亞沿岸地區的頻率減少4.5%(51.9%)。暖化效應影響下,高解析度海氣與大氣模式推估近未來與21世紀末西北太平洋TC活動的變化趨勢一致,但變化幅度仍具有不確定性。經由GPI與SSE能量診斷分析,發現高解析度大氣模式推估在21世紀末TC主要生成位置上,中層大氣較乾燥,季風槽減弱伴隨中層下沉運動異常及SSE活動減弱,限制TC生成。然而,在21世紀末,較暖海溫與較弱垂直風切,及SSE動能產生效率增加,有利TC更快速的增強,更具有破壞性。
  • Item
    未來長期氣候變遷對北行侵台颱風個案之降雨影響
    (2019) 陳常溢; Chen, Chang-Yi
    本研究主要針對暖化情境對侵台颱風在降雨方面造成的影響為主軸。為了排除諸多不確定因素,本研究選取過去發生並有發布警報之北行颱風個案,使用雲解析風暴模式Cloud-Resolving Storm Simulator (簡稱CReSS)重現,並將其放置於本世紀末的氣候場探討,並加以比較進行敏感度測試,隨後本研究也使用水收支方程式來探討兩者降雨差異的原因。 未來的氣候推估方面,我們選取CMIP5(Coupled Model Intercomparison Project Phase 5)共38個模式,挑選1981-2000年Historical run和未來RCP4.5和RCP8.5暖化情境的2081-2100年,選取這三種情境的6到10月做平均後,計算這100年間的差異作為氣候差異場。在個案上,我們選取了梅姬颱風(2010)、泰利颱風(2012)、康芮颱風(2013)以及鳳凰颱風(2014)。各個案的控制組實驗(現代氣候)採用格點分析資料模擬,而將上述氣候差異場疊加於相同分析資料後,即為未來暖化情境的敏感度實驗。 結果顯示,各個案大同小異:梅姬颱風在距中心500 km半徑內,RCP4.5情境下的總降雨量增加約20%,RCP8.5情境下增加約9%;泰利颱風在400 km半徑內,RCP4.5情境下總雨量增加約11%,RCP8.5情境減少約2%;康芮颱風在500 km半徑,RCP4.5情境下降雨量增加約57%,RCP8.5情境下減少約8%;最後,鳳凰颱風在400 km半徑內,RCP4.5情境下降雨量增加約11%,RCP8.5情境下增加約6%。所有的共通特性皆為強降水事件增加;弱降水事件減少。由於RCP4.5情境下雨帶較RCP8.5情境分佈廣泛,而RCP8.5情境下降雨集中在眼牆附近。在計算格點平均時,會使得降雨較集中的RCP8.5情境總雨量較少,但其雨量集中的程度不容小看。 在降雨增加的原因,分析颱風的次環流運動,低層內流增強;高層外流增強,導致內核上升運動增強,這也使得降雨在內核提高。
  • Item
    副熱帶東北太平洋海溫年際及年代際變化以及其對亞洲-太平洋之影響
    (2019) 鄔毅愷; Wu, Yi-Kai
    觀測發現,副熱帶東北太平洋的暖海溫從2013年開始出現持續增暖的現象,近期研究發現此暖海溫對短期天氣或長期氣候變異颱風都有顯著的影響。然而相較於赤道東太平洋海溫, 有關副熱帶東北太平洋海溫的時空特徵之相關研究仍相當有限. 本研究主要探討副熱帶東北太平洋的特徵, 增暖的物理機制, 以及對天氣與氣候的可能影響 分析顯示,此區域之海溫變異與太平洋經向模態密切相關。除此之外,亦受到暖化趨勢的影響(約貢獻15%之海溫變異)。小波分析進一步發現此區域海溫包含了年際及年代際變化。在年際尺度,副熱帶東北太平洋海溫增暖同時,赤道太平洋亦同時有一類似聖嬰結構之海溫增暖現象。而在年代際尺度,太平洋年代際震盪、北太平洋環流震盪以及大西洋多重年代際震盪對此區域海溫變化皆有顯著的影響。 海洋混合層熱量收支得知,此海溫近期之增暖,主要透過風-蒸發-海溫(wind-evaporation-SST, WES) 之正回饋機制。除此之外,本研究也藉由兩個個案,討論此海溫對聖嬰現象以及西北太平洋颱風活動之影響。
  • Item
    全球暖化下的熱帶降雨
    (2012) 陳昭安; CHAO-AN CHEN
    從全球平均角度來看,在模式模擬全球暖化情境中,全球平均降雨變化呈現隨著時間增加的趨勢,並且對於降雨事件的發生頻率與強度,則有一弱降雨發生頻率減少,強降雨發生頻率增加之趨勢,並且呈現一個減弱的熱帶環流。然而,實際上降雨變化存在複雜的空間差異,因此與區域平均降雨變化相關之區域降雨頻率與強度的改變,也會隨著區域不同而有差別。本篇論文分析氣候模式模擬全球暖化情境,檢驗熱帶區域降雨變化的影響機制,並且進一步探討在這樣的降雨變化之空間差異下,其降雨頻率與強度的變化,以及其相對應的熱力與動力作用的貢獻。此外,亦利用大氣穩定度的改變來探討對流發展深度與熱帶環流變化的關係。 一般而言,當氣候變暖,平均降雨增加(減少)主要與降雨頻率增加(減少)以及強度增強(減弱)有關,這樣的變化主要受到大氣水氣增加之熱力貢獻,以及與熱帶環流變化有關的動力貢獻之影響。熱力貢獻對於平均降雨變化、降雨事件的頻率與強度,皆為正貢獻,特別是極端降雨事件,並且空間分布差異相對很小,而動力貢獻則係造成區域差異的關鍵。降雨頻率增加與強度增強,受到熱力貢獻主導較多,進而有利於平均降雨之增加。動力貢獻則可進一步加強這樣的變化,例如透過錦上添花機制(rich-get-richer mechanism)或海洋熱通量回饋。或者透過對流深度加深效應,輕微的減弱熱力貢獻。相對於熱力貢獻,動力貢獻與降雨發生頻率減少和強度減弱較為相關,例如透過落井下石機制(upped-ante mechanism)、對流深度加深效應、長波輻射冷卻、冷平流作用,然而暖平流則輕微有利於降雨事件的頻率增加。對於與降雨相關的之熱帶環流改變,透過資料分析與模式模擬測試顯示,當氣候暖化,熱帶環流可能減弱亦可能增強。當大氣環境越穩定(不穩定),對流可發展深度亦隨之加深(變淺),並且導致熱帶環流的減弱(增強)。
  • Item
    全球暖化影響之下日降水與極端降水事件變化之探討
    (2006) 吳郁娟
    Weather and climate events can have serious and damaging effects on human society (such as flood, heavy precipitation, heat wave, etc.). In this study, the simulation of the variability and extremes of daily rainfall for the present and the future climate is investigated. This is done by the ECHAM4/OPYC3 GSDIO for the period 1960-1990 and the Special Report on Emission Scenarios (SRES) A2 (rapid CO2 increase) and B2 (moderate CO2 increase) forcing scenario for the period of 2070-2100. Moreover, observational rainfall data from the Global Precipitation Climatology Project (GPCP, 1996-2004) is considered. In general, analysis of model data revealed agreement with observations. For the future, the ECHAM4/OPYC3 simulates the variability of the daily rainfall predicts the most pronounced precipitation changes are found in high latitudes of the Northern Hemisphere for the winter. However for some continental areas, the change of mean precipitation and rainfall intensity is not coincident. A clear reduction in the probability of wet day, in particular, for the large areas in the northern mid-latitudes and subtropics. Despite this decrease the relative contribution of heavy precipitation has grown due to the corresponding increase of the scale parameter of the gamma distribution. This implies a more extreme climate with higher probabilities of droughts and heavy precipitation events. Furthermore, the variability of the 99.7th percentile also implies in the area of heavy precipitation, stronger heavy rainfall will happen in the future, vice versa. Extreme value theory based on GEV and GPD provides a much more complete analysis of the statistical distribution of extreme rainfall event. We have obtained statistically significant spatial models of the three parameters of GEV and GPD. N-years return level form GEV or GPD all show the relative changes in extreme precipitation is larger than change in total precipitation.