Skip to main content
Communities & Collections
All of DSpace
Statistics
English
العربية
বাংলা
Català
Čeština
Deutsch
Ελληνικά
Español
Suomi
Français
Gàidhlig
हिंदी
Magyar
Italiano
Қазақ
Latviešu
Nederlands
Polski
Português
Português do Brasil
Srpski (lat)
Српски
Svenska
Türkçe
Yкраї́нська
Tiếng Việt
Log In
Log in
New user? Click here to register.
Have you forgotten your password?
Home
科技與工程學院
機電工程學系
教師著作
教師著作
Permanent URI for this collection
http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/31266
Browse
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
Search
By Issue Date
By Author
By Title
By Subject
By Subject Category
1 results
Back to results
Filters
Author
search.filters.author.陳致仰
1
search.filters.author.葉榮木
1
search.filters.author.蔡俊明
Subject
search.filters.subject.腦電波
1
search.filters.subject.μ波
1
search.filters.subject.大腦人機介面
1
search.filters.subject.對角化主要成份分析法
1
search.filters.subject.特徵擷取
Search subject
Submit
Browse subject tree
Date
Start
End
Submit
2007
1
Has files
1
No
Reset filters
Settings
Sort By
Accessioned Date Descending
Most Relevant
Title Ascending
Date Issued Descending
Results per page
1
5
10
20
40
60
80
100
Search
Author: search.filters.author.陳致仰
×
Subject: search.filters.subject.腦電波
×
Search Tools
Search Results
Now showing
1 - 1 of 1
No Thumbnail Available
Item
改良式對角化主要成份分析法應用於腦電波辨識
(
2007-06-01
)
陳致仰
;
葉榮木
;
蔡俊明
Show more
本篇文章提出一個有效的方法,對受測者在意圖吐舌頭與意圖舉起左手時的腦電波做辨識。腦電波辨識是否成功的關鍵,在於特徵擷取與分類兩個議題,有別於過去文獻將重點放在分類演算法的改良上,我們認為找出更具代表性和更精簡的特徵,同樣值得重視。若選取的特徵能夠讓類別之間的差異變大,我們就可以使用很簡單的方法,來取代原先複雜的分類演算法,也不會降低辨識的準確率。在此,我們採用在人臉影像辨識中,具有良好效果的對角化主成份分析法(DiaPCA),來擷取腦電波特徵,並加以辨識。我們除了找出 DiaPCA 在腦電波辨識的應用中最佳的參數條件之外,並提出了「改良式對角化主成份分析法」,來提升其辨識率。研究結果顯示,我們所做的修改,將原始的 DiaPCA應用在腦電波辨識的準確率大幅提升了10.79%。
Show more