地理研究
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/194
Browse
1 results
Search Results
Item 深度學習影像分類應用於福衛二號衛星影像之崩塌地自動判釋(地理學系, 2019-11-??) 蔡詠名; 張國楨; 陳俊愷; 周學政; Yung-Ming Tsai, Kuo-Chen Chang, Chun-Kai Chen, Hseuh-Cheng Chou臺灣易遭受各種自然災害侵襲,如地震或颱風。山區容易發生崩塌,造成生命財產安全的損害。使用遙測技術監測崩塌地的發生是政府機關的年度任務。然而,這個任務暨需求大量人力,且花費許多時間。為了解決這個問題,本研究提出應用深度學習進行全自動化衛星影像崩塌地分類的方法,以獲得更準確並可靠的分類結果。所採用之分類模型是基於U-Net 卷積類神經網路,以CNTK 深度學習工具進行開發。此模型以一對衛星影像與地真資料做為模型輸入,輸出預測的分類結果。使用多對福衛二號影像與地真資料進行模型訓練。地真資料共分五類:植被、河床、崩塌地、水體與其他地物類別。為了更準確分辨崩塌地與其他易混淆類別如河床與農地,衛星影像中加入坡度圖層做為分類資訊。本研究所產出的分類模型相當可靠,能夠清楚從衛星影像上判釋崩塌地。模型本身可以重複使用,而且過程完全自動化,並可改善崩塌地監測與繪製崩塌地目錄的工作流程,對環境災害監測與災害潛勢繪製將有所助益。