學位論文
Permanent URI for this collectionhttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/73896
Browse
6 results
Search Results
Item 免標記多模態全像斷層造影技術與應用之研究(2024) 黃崇軒; Huang, Chung-HsuanItem 生物微培養器研製及其應用於數位全像顯微活細胞觀測(2022) 葉仲禹; Yeh, Chung- Yu本研究為研製生物微培養器系統維持生物細胞存活,並運用數位全像顯微鏡(Digital Holography Microscope, DHM)進行長時間(72 hrs.)活細胞量測,為了達到長時間連續觀測活細胞,本論文研製出可以放在顯微系統上的微型生物培養器系統。研製之微型培養器解決了現階段常會遇到實務應用上的問題,例如:溫控加熱不均、體型過大,沒有氣體系統導致能培養的細胞種類有所限制、成本過高等等,此研究運用微型控制器、低電壓電路設計與3D列印的技術,可依照量測系統做客製化設計,且改善製作成本、具有安全性,也能提供多種細胞生長、分裂之環境的生物微培養器,搭配數位全像顯微系統進行長時間的細胞觀測與造影,本研究實驗結果可驗證此系統具實務可行性,並可應用於觀測細胞分裂等結果。Item 整合數位全像與條紋投影方式應用於積體電路表面量測之研究(2021) 何思嘉; He, Ssu-Chia本研究為整合數位全像術(Digital Holography, DH)與條紋投影輪廓術(Fringe Projection Profilometry, FPP)兩技術於同一系統,透過此整合系統量測物體的三維表面,可達到比單一技術量測結果更加完整的三維表面資訊。如今晶片尺寸越做越小,對z軸解析度的要求越來越高,在量測樣本的深度變化時,DH的三維解析度比FPP更加精密,因此可以透過DH量到更精密的元件;FPP則可以量測漫射面的物體表面資訊,而且在量測階高物體上FPP略勝一籌,可以量測到階高物體的高度,最後整合兩技術之優點,將這兩者技術的量測結果整合,即可獲得高解析度、物體資訊更完整的三維複合表面階高物體結果。Item 運用波前修正於數位全像造影及其深度學習致動粒子偵測之研究(2020) 高揚傑; Gao, Yang-Jie本論文主要探討利用數位全像式的資料及波前修正技術於深度學習以影像辨識上的優勢,以達到三維粒子偵測之目的。在數位全像造影中,本文探討波前像差對於樣品資訊的影響及修正方法,以得到正確的物體資訊,同時運用數位全像資料擴增方法,來提升數據集的多樣性。而運用上述方法即可透過數位全像術取得粒子的波前繞射資訊,再運用深度學習於物件偵測的技術,藉由調整模型架構及參數,來使樣品偵測能力及辨識能力達到最大準確度,來進行三維空間位置定位及尺寸分類,以利未來透過數位全像顯微造影系統擷取其他樣品的光場資訊進行定位,增加未來應用的潛力。Item 具現場數位全像監控之雷射投影列印系統(2020) 林佑勳; Lin, Yu-Hsun本論文提出了一套結合全像條紋列印技術和數位全像術的雷射投影列印系 統 並且展示了相位閃耀光柵與一般繞射光柵的製造與分析。全像條紋列印技術,起初是為了解決 一般合成 全像列印術對環境穩定度的高度要求以及雷射直接寫入的設備昂貴問題,有別於 逐點 直接 寫入能量的雷射直寫系統,此系統是讓光束帶著從數位微鏡裝置投影出來的條紋影像,然後 轉印到光敏感介質上,以形成光折變光柵透過光學的分析,得以讓此系統的校正與設備需求上不需要過多資金的投入。最後,我們結合了數位全像術,得以檢測與分析列印完成之元件的相位分佈做為曝光條件的調整依據使我們可以列印出0到2π分佈 的純相位全像片來製造繞射元件,使整個系統的應用價值提高,最後我們會把一般全像條紋系統列印的繞射光柵與本論文所列印的閃耀光柵 做一系列的比較與分析。Item 高解析度數位全像顯微系統之研究(2012) 李岳龍; Yueh-Long Lee本論文中主要針對反射式數位全像顯微系統與如何提升數位全像顯微系統的縱向解析度與橫向解析度來進行深入的探討與研究。首先探討有關於反射式數位全像顯微系統拍攝樣本時物鏡的收光問題,系統量測特性與參數,以及量測各種樣本的三維表面輪廓,並與市面上的三維表面輪廓儀(白光干涉儀)比較其系統之間的差異性。接著主要研究工作為探討雷射光源對於離軸式數位全像顯微術之縱向解析度的影響,並考慮在波長穩定雷射光譜下的相位量測表現。在計算系統相位精準度的過程中,當我們使用空間平均與時間平均兩種平均系統相位誤差的方法時,結果發現單模態雷射與多模態雷射之同調特性對於重建相位精準度的影響與差異,進而可將波長穩定技術運用於雷射二極體的單模操作狀態使得數位全像顯微系統的縱向解析度得以提升至次奈米(< 1nm)等級。另一個研究主題為提升系統的橫向解析度,主要是利用合成孔徑原理來進行橫向超高解析度的角度多工推導與模擬,由電腦模擬結果證實使用物光與參考光同時角度多工技術,此時只需拍攝一張數位全像片,即可以達到橫向超高解析度。