Browsing by Author "Chang, Tien-Li"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item 以多維結構之微流體元件於糖尿病檢測之應用(2017) 周世彥; Chou, Shih-Yen奈微米製程技術發展不斷創新,進而可使元件的體積微小化、降低重量,同時提升單位面積的結構密度於產品的應用。目前微流體元件具有輕薄、價格低廉、即時檢測、可攜、樣本微量化和定量分析檢測的優點,將可有效獲得身體的資訊,在疾病初期獲得有效治療,也能有治療及疾病追縱的功能。本研究結合兩種奈微米製程製造微流體元件,以波長(Wavelength)為355 nm皮秒脈衝雷射(Picosecond pulse laser)製程,藉由探討不同雷射能量密度(Fluence)對玻璃基板寬度(Width)和深度(Depth)的影響,直寫長2 cm、寬2 mm、深度300 m的流道,並在流道上製作直徑400 m的微圓柱(Pillar)結構。另一方面,以靜電紡絲製程(Electrospinning process)在微圓柱上製作線徑為285 nm聚丙烯腈(PAN, Polyacrylonitrile)的奈米線,PAN奈米線會因微圓柱結構而形成三維奈米線支架,在微流體元件周圍塗UV固化膠,以蓋玻片封裝,並進一步進行細胞攔截測試。以肺腺癌細胞(A549)作為多種微流體元件攔截率測試之檢體,在細胞濃度為1.35×107 cell/mL下,以流量5 mL/hr流入0.2 mL,於僅有流道的微流體元件攔截率為41.54%,於同時具有流道和一維奈米線結構於微流體元件的攔截率為53.93%,於同時具有流道和三維奈米線結構在微流體元件的攔截率為100%,利用微流體元件捕捉細胞之功能捕捉紅血球(Red blood cell, RBC),具血液純化的作用,以能增加糖化血色素檢測的準確性,有效應用於糖尿病(Diabetes)檢測。Item 以紫外光波段超短脈衝雷射於石墨烯薄膜式聚合酶鏈鎖反應晶片之研究(2017) 陳文乙; Chen, Wen-Yi本研究利用先進雷射微細製程技術(Advanced laser micromachining technique)於旋塗控制之石墨烯薄膜(Spin-coating graphene thin film)上,進行微型加熱器(Micro-heater)的製作。本研究藉由檢測其製作之元件電學特性與加熱特性,並利用程式控制與電路設計,以應用在設計與製作之聚合酶連鎖反應(Polymerase chain reaction, PCR)晶片,進行去氧核醣核酸(Deoxyribonucleic acid, DNA)之增幅。 本研究結果發現製備的微型加熱器長度愈短,石墨烯電極通道寬度愈寬則電學特性愈佳,加熱特性也會愈好,即使用較少的能量就可以達到研究預期的溫度。為了在微型加熱器上安置一個小腔體(Chamber)來進行DNA的增生,本研究選用的設計長度為9 mm與寬度為1 mm之微型加熱器,並藉由LabView程式控制,以固態繼電器(Solid state relay, SSR)與設計脈衝寬度調變(Pulse width modulation, PWM)電路,達到單電壓源輸入及多電壓源輸出的控制。本研究可以真實被應用於PCR反應中的三段溫度控制中,其分別可穩定達到90-95 °C、50-55 °C與72-78 °C。透過以上的實驗參數調控,本研究進行DNA進行增生放大實驗,該實驗量測結果皆有放大特徵,並證明本研究製備之石墨烯微型加熱器,將能有機會實際應用在聚合酶連鎖反應晶片產品之設計與製作。Item 以超快雷射製作石墨烯/二硫化鉬元件結構於氣體檢測(2021) 韓同耀; Han, Tong-Yao本研究利用超快雷射製程 (Ultrafast laser processing technique)進行製作設計的微型加熱感測元件及其特性探討,同時整合二硫化鉬(Molybdenum disulfide, MoS2)材料,以開發異質結構(Heterostructure)元件於氣體檢測(Gas detection)應用。本研究是採以有限元素法(Finite element method, FEM),在設計的串/並聯電路之微加熱結構元件,進行熱性能和電路的電流密度之預測。在實驗方面,是利用超快雷射直寫技術於石墨烯(Graphene)薄膜,其固定重複率為 300 kHz,在振鏡掃描速度為 300 mm/s及雷射能量密度為 2.19 J/cm2,進行製程路徑次數 2 次後,完成不同寬度的薄膜電極元件製作及其檢測元件特性分析。研究結果顯示:在施加相同電壓條件下,串聯電路結構的微加熱器穩態溫度較低,且穩態溫度受電路形狀的影響較大,其原因是串聯電路結構的電阻會明顯大於並聯電路結構,因此該元件通過的電流較小,產生的焦耳熱也較小。此外,本研究於石墨烯感測元件搭配MoS2溶液,以滴鍍(Drop casting)技術,開發MoS2/石墨烯微型加熱感測元件,並比較石墨烯微型加熱感測元件,進一步進行氣體檢測之靈敏度探討。本研究結果在石墨烯微型加熱感測元件方面,顯示在溫度於92 oC時,該元件偵測氣體濃度於100、300和500 ppm時,氣體響應值(Response)會分別為1.4 %、7.2 %和17.7 %。本研究結果在MoS2/石墨烯微型加熱感測元件方面,顯示在溫度於92 oC時,該元件偵測氣體濃度於100、300和500 ppm時,氣體響應值分會別為1.7 %、4.9 %和12.3 %。因此,本研究證明MoS2/石墨烯微型加熱感測元件具有良好的恢復性,在50 s內該元件的檢測電阻可以恢復至原始電阻。Item 以雷射及堆疊結構技術於可撓性傷口酸鹼檢測元件之研究(2021) 范瀞元; Fan, Jing-Yuan本研究以氧化石墨烯(Graphene oxide, GO)薄膜覆蓋可撓性的聚醯亞胺(Polyimide, PI)基板,利用超快雷射(Ultrafast laser)產生還原氧化石墨烯(Reduced graphene oxide, rGO),製作環形指叉狀電極,上層感測區,覆蓋聚丙烯腈(Polyacrylonitrile, PAN)/聚苯胺(Polyaniline, PANI)之靜電紡絲,以製成pH酸鹼感測元件。本研究測試雷射不同的重疊率與單發能量,對應所產生rGO之寬度關係及量測產生rGO的導電性,選出最適當的加工參數。本研究最終選用掃描速度500 mm/s、雷射脈衝頻率300 kHz和能量密度為0.19 J/cm2,在雷射路徑一次製程,製作電極元件,其最低的電阻值為3230 Ω。在材料性質分析下,顯示雷射的能量能有效將GO的含氧官能基去除,還原成rGO。在電紡絲製程方面,電紡絲溶液會以PAN濃度為7 wt%和PANI濃度為1.4 wt%調配比例,在25000 V操作電壓下,產生的電紡絲平滑無珠鏈狀,平均線徑為498.36 nm,該結果經化學分析,證實可將PANI摻入電紡絲中。本研究在製作的設計檢測元件,量測電性響應於不同酸鹼值(pH = 2; 4; 6; 8; 10),顯示檢測溶液越呈酸性,且其瞬間電流響應越高。另外,在元件靈敏度(電阻變化量/初始電阻)對應pH值反應,顯示每pH量測值會下降6.37 %之線性關係,該其響應結果,可應用於傷口檢測。本研究實際檢測應用,是採以大鼠之傷口為目標檢體,量測3種處理傷口含原始、敷料1(含殼聚糖+奈米金粒子30 μM)及敷料2(含殼聚糖+奈米金粒子60 μM),分別量測第1天、第4天與第7天之電性變化,顯示在敷料2的傷口檢體pH值,會隨時間變化最小,有助於傷口復原。Item 以飛秒雷射輔助製程於自供電NO氣體檢測元件之應用研究(2024) 黃崧溥; Huang, Song-PuItem 先進雷射石墨烯結構製程技術於生物分子元件應用之研究(2018) 陳肇祈; Chen, Zhao-Chi多功能生醫晶片的實現,用於人類的醫療保健上,除在生活中預防疾病發生外,更能即時甚至提前預測以獲得病患身體檢測之訊息,進一步於醫院接受更完整與深入治療,使病患在疾病之初期,立即獲得有效的診療。本研究在開發先進雷射(Advanced laser)於石墨烯(Graphene)圖案化電極製作及應用技術,以脈衝雷射剝離(Pulsed laser ablation, PLA)製程直寫(Direct writing)方式,在多層石墨烯(Multi-layer graphene, MLG)薄膜基材,進行製程材料的探討與感測元件的製作。本研究所使用的先進雷射系統,包括波長355 nm與532 nm的超快皮秒脈衝雷射(Ultrafast picosecond pulsed laser, 355/532-UPPL)及波長355 nm的奈秒脈衝雷射(Nanosecond pulsed laser, 355-NPL)。藉此先進雷射剝離製程,探討與多層石墨烯薄膜材料間之影響及特性分析,以製作感測電極結構元件。同時搭配微流體元件(Microfluidic device)設計和靜電紡絲(Electrospinning nanofibers)技術,實際應用於不同生物分子之元件檢測。 本研究以雷射製程技術於葡萄糖(Glucose)檢測元件的應用上,在加入葡萄糖氧化酶(Glucose oxidase, GOD)前/後,其皆呈現線性關係。然而,GOD的電特性是能夠直接通過監測多層石墨烯導電薄膜來獲得的,該電性響應顯示良好的葡萄糖檢測濃度範圍為1 mM到10 mM。此外,在微流體元件的應用上,以順時鐘(Clockwise)方式製作陣列柱狀微流道(Pillar array channels)結構,其具有少量的熔渣(Dross)與平滑的表面特徵,利用實驗結果之模型預測,玻璃基板(Glass substrate)的移除率(C)可達到0.04 μm/pulse。在靜電紡絲奈米線實驗中,PVA-G混合奈米線透過少量摻雜(濃度為6%)石墨烯薄片是可降低薄膜之電阻,並且能夠在溫度60 °C下進行操作,消耗電功率(Electric power, P)為265.25 mW。在相對溼度(Relative humidity, RH)為80%時,其較佳的濕度檢測之電性響應(Electric response)、反應時間(Response time)及恢復時間(Recovery time)性質分別顯示為66.4%、11 sec和35 sec。在聚合酶連鎖反應(Polymerase chain reaction, PCR)元件的實驗中,陣列孔洞之快速熱循環(Hole arrays-rapid thermal cycling, HA-RTC)元件顯示在60分鐘的時間能夠於人類多瘤性病毒(BKV)的標記物(Marker),以及其在354鹼基對(Base pair, bp)的VP1片段完成診斷(增幅),證實以多層石墨烯薄膜電極製作之微型加熱元件是較佳溫度保持以及熱傳導之特性。 本研究以先進脈衝雷射一次性製程(Single-step process)技術,達成免光罩(Mask-less)、微型化、快速製作及微量偵測之需求,在生醫檢測元件設計與應用,並以石墨烯材料製作薄膜檢測元件之特性,在靜電紡絲製作混合奈米線應用於生物分子之檢測獲得到驗證。Item 利用奈秒脈衝式雷射與奈米線微細成型電阻抗晶片於生醫檢測之研究(2015) 張傑富; Chang, Chieh-Fu隨著奈米科技(Nanotechnology)的不斷進步,近年來已有許多研究以奈米製程技術製作感測器,特別在製作生醫感測(Biomedical Sensing)晶片上,已投入大量心力進行研究,相較於現在醫院所使用之檢測機台,生醫晶片更可以達到定點照護(Point of care),對於病患的症狀可以即時的偵測,有助於落實預防醫學之目的。本研究是以奈秒雷射微細加工技術(Nanosecond laser micromachining technique),在網版印刷多層石墨烯製作電極(Screen-printed multilayered graphene electrode),該研究探討其能量密度(Fluence)和脈衝重疊率(Pulsed overlap)於材料之加工深度與線寬之影響。本研究採以紫外光波段之奈秒雷射,可製作出之最小電極間距為60 μm。結合靜電紡絲技術(Electrospinning technique)製作聚乙烯醇(Polyvinyl alcohol, PVA)複合葡萄糖氧化酶(Glucose oxidase)之奈米線薄膜於電極結構上,藉由加入不同濃度之葡萄糖氧化酶觀察其電性變化,可以得到當葡萄糖濃度僅有0.011 mM時以具有明顯的電阻變化,且在葡萄糖濃度為0.011 mM - 0.41 mM之區間具有一趨近線性之電流變化,推測此方法對於低濃度之葡萄糖檢測具有良好的價值,並有機會應用於生醫晶片製作且進行大量生產。Item 利用超快雷射實現PCR微流體元件於新冠肺炎核酸檢測(2021) 黃鉉評; Huang, Syuan-Ping本研究利用超快雷射製程技術(Ultrafast laser technique)之超短脈衝(Ultrashort pulses)與低熱影響區(Low heat-affected zone)機制,在玻璃基材製作陣列微柱(Micro-array structures)之微流體元件(Microfluidic devices)。本研究使用之陣列微柱為毛細流的微泵,應用於流感病毒(Influenza virus)的電性檢測(Electrical detection)和SARS-CoV-2的核酸(Deoxyribonucleic acid, DNA)擴增。本研究在元件設計概念上以毛細力(Capillary force)驅動作為其特點,於微流道底部設計6種不同間距之陣列微柱(10 µm; 20 µm; 40 µm; 80 µm; 160 µm;無微柱),根據不同的生物分子檢測應用,本研究所設計之陣列微柱可提供多功能應用。在不同生物分子(101至106 PFU/µl(cells/µl))的電性檢測上,以奈米銀顆粒(Silver nanoparticle, AgNPs)覆蓋在元件結構,測試在陣列微柱於直徑30 µm分子的攔截效力,作為電性檢測依據。在聚合酶連鎖反應(Polymerase chain reaction, PCR)中,藉由有限元素法(Finite element method, FEM)進行設計的陣列微柱間距,最佳化流體行為與熱傳於微柱PCR反應,再透過程式控制與電路設計實現PCR所需的溫度控制。本研究成功在30次的溫度循環中成功擴增72 bp的SARS-CoV-2核酸片段,檢測限度可達到2.8 pg/µl。Item 利用超快雷射製程製備石墨烯結構元件應用氣體偵測之研究(2022) 周承穎; Chou, Cheng-Ying本研究旨在利用超快雷射(Ultrafast laser)製程技術於石墨烯薄膜 (Graphene thin films)上製作電極與結構元件(Devices),並將其應用於氣體偵測(Gas detection),透過超快雷射製程成型薄膜表面與結構,進行製程參數的建置與分析,以利評估後續透過超快雷射製程於偵測元件的可行性。在超快雷射製程技術開發中,本研究採用超快雷射中波長為532 nm的皮秒雷射源(Picosecond laser source),在較低的熱影響區(Low heat-affected zone)之製程機制條件下,以應用於薄膜結構元件上的製作。本研究利用超快雷射於石墨烯薄膜上製作間距2 mm的螺旋狀電極(Spiral electrode)與寬度和深度分別為22.43 m與12.48 m的指叉狀電極(Interdigitated electrode, IDE)元件,並且製作寬度和深度分別為25.81 m與15.24 m的微溝槽(Microgroove)結構元件。另一方面,本研究探討不同材料對氣體的偵測機制,包括石墨烯、氧化鋅奈米線(ZnO nanowires)以及還原氧化石墨烯(Reduced graphene oxide, rGO);其中,利用螺旋狀電極搭配無線傳感模組(Wireless module)進行氣體偵測。此外,本研究會搭配水熱法(Hydrothermal method)和電紡絲法(Electrospinning method)的方式,在微溝槽與指叉狀電極上製作奈米線(或奈米纖維),完成氣體偵測元件的研製。本研究結果顯示,利用超快雷射製程開發的氣體偵測元件,可實際應用在室溫下氣體偵測,包括偵測濃度5-150 ppm的一氧化碳(Carbon monoxide, CO),以及偵測50-400 ppm的一氧化氮(Nitric oxide, NO)。Item 應用超快雷射技術於石墨烯奈米銀金屬粒/聚醯亞胺複材之熱檢測元件探討(2020) 蕭鈞庭; Hsiao, Chun-Ting本研究利用超快雷射製程技術(Ultrafast laser processing technique)進行微結構(Microstructures)之熱元件(Heating device)製作及其特性之探討,以應用於氣體檢測(Gas detection)。在本研究中會使用超快雷射直寫技術分別於石墨烯(Graphene)/聚醯亞胺(Polyimide, PI)基材及奈米銀(Silver nanoparticles, AgNPs)/石墨烯/PI基材進行雷射測試,固定重複率為300 kHz、加工次數3次下,在振鏡掃描速度為500 mm/s及雷射能量密度為2.45 J/cm2,完成薄膜製程及元件製作,並依此參數製作不同寬度熱檢測元件。研究顯示在相同寬度5 mm下,石墨烯/PI基板給予功率6.10 W時,最高溫約134 ℃;奈米銀/石墨烯/PI基板給予功率5.83 W時,最高溫約104 ℃。另外,在相同寬度6 mm下,石墨烯/PI基板給予功率為6.10 W時,最高溫約110 ℃;奈米銀/石墨烯/PI基板給予功率4.48 W時,最高溫約113 ℃。進一步本研究顯示在寬度6 mm之奈米銀/石墨烯/PI基材熱檢元件,能給予較少功率,產生出100 ℃以上溫度,且基材彎曲90 o時,溫度仍能維持在100 ℃以上。同時,本研究搭配設計所製作的指叉狀(Interdigitated)電極元件進行氣體量測,研究顯示在一氧化氮(Nitric oxide, NO)濃度為650 ppm時,該元件電阻值可從78 上升至85 ,氣體響應值約9 %,且氣體響應值會隨氣體濃度增加而上升。Item 應用飛秒雷射圖案化透明聚合物技術於抗菌特性之研究(2024) 邱品軒; Chiu, Pin-ShiuanItem 研究脈衝雷射結構製程於 IC 堆疊元件特性及傷口酸鹼值之應用(2021) 莊銘源; Chuang, Ming-Yuan近年來,高科技生醫檢測元件及系統產品不斷更新與改良,其積體電路(Integrated Circuit, IC)晶片的需求也不斷增加。為有效提高產能,本研究結合先進脈衝雷射結構技術(Advanced pulse laser structuring techniques)進行生醫感測元件的研製與IC晶片的製程改良。本研究會採用奈秒脈衝雷射(Nanosecond pulsed laser, NS laser)與皮秒脈衝雷射(Picosecond pulsed laser, PS laser)技術,在微結構(Microstructures)和薄膜(Thin films)製程上進行探討,並利用雷射結構技術於堆疊元件(Stacked device)進行製程,研究元件之電特性變化。本研究使用的IC晶片是以矽(Silicon, Si)為基材,並由二氧化矽(Silicon dioxide, SiO2)、鋁(Aluminum, Al)和氮化矽(Silicon nitride, Si3N4)薄膜堆疊而成。藉由調控雷射參數進行實驗,顯示在能量密度為4.11 J/cm2時,該元件的電流值能提升至100 mA,證實脈衝雷射製程可有效提升元件的電特性。此外,本研究利用脈衝雷射圖案化電極製程,進行酸鹼值(pH value)檢測元件開發,其結構是以氧化銦錫(Indium tin oxide, ITO)玻璃為基材,結合厚度400 nm的鋁和14 nm的氧化銦鎵鋅(Indium gallium zinc oxide, IGZO)薄膜研製而成,而為了增加元件檢測面積,會選用指叉狀電極(Interdigitated electrodes, IDEs)設計。本研究採用定電流(200 μA)方式進行量測,觀察pH濃度(pH 2-10)和不同指叉間距的電性變化。根據實驗結果,本研究完成pH檢測元件,其靈敏度(Sensitivity)最高可達56.67 mV,測試呈現良好的可靠度,且能實際應用於傷口檢測(pH 6.5-7.3)。Item 設計與製作微流體螺旋結構元件應用於細胞顆粒捕捉之研究(2017) 潘昱辰; Pan, Yu-Chen本研究主要設計與製作微流體螺旋結構元件(Microfluidic spiral structure device)於細胞顆粒(Cell particles)行為之探討,以有限元素法(Finite element method, FEM)分析不同設計的微流體幾何結構元件,包括分散(Separation)、聚集(Aggregation)與渦流溢放(Vortex shedding)流場行為及特性。本研究於微流體元件結構分析重點分為三部份:在第一部份單螺旋式微流體結構中,該微流道設計寬度300 μm、環(Loop)間距450 μm與深寬比(h/w) 0.167條件下,產生迪安流(Dean flow)之擺甩運動,並進行相異尺寸細胞顆粒相對位置之研究,其顆粒分散的位置距離微流道內壁面(Inner)分別為55 ± 25 μm (粒徑: 18 μm) 及155 ± 55 μm (粒徑: 5 μm)。第二部份為非對稱式三道分叉流道,為導引分離後不同大小之細胞顆粒至指定微流道元件中,該設計顯示在設計寬度分別為95 μm及120 μm下,針對大/小細胞顆粒導引效率分別為90±1.84%及93±0.79%,以達到分離後即時篩選之效果。第三部份為設計I型柱狀、圓形柱狀以及混合柱狀之微流體結構,為了降低細胞顆粒在微流體系統中之流速,以增加碰撞柱狀結構的機率及聚集調控,達到即時偵測和原位捕捉的能力。本實驗結果顯示以相同流速 1.83 × 10-5 m/s下,細胞顆粒環繞在混合柱狀微流體結構旁之時間達19 sec,相較於I型柱狀與圓形柱狀結構其停留時間提升44%。進一步,本實驗亦以軟微影技術(Soft lithography)製作微流體元件,並投入聚甲基丙烯酸甲酯(Poly methyl methacrylate, PMMA)之微米尺度顆粒,結果顯示實際與模擬顆粒數據於分散效果可達到82%,其聚集效果與模擬數據提升20%。本研究證實了單螺旋式及柱狀結構設計,會有助於提升不同大小之細胞顆粒分散與聚集效果,亦能應用於生物晶片細胞捕抓設計,將能在生醫微流體檢測研究給予重要參考。Item 超快雷射與轉印製程於金屬結構層之親疏水性影響探討(2020) 賴威霖; Lai, Wei-Lin鋁合金(5052)與銅合金(C2800)在工業上用途極廣,具有質量輕且導電性、導熱性良好的優點,是具應用潛能之合金材料,透過製程的加工處理,將可改變鋁、銅合金表面結構與元素組成比例,產生親或疏水性表面(Hydrophobic/Hydrophilic surface),達到提升疏水性(自潔)或親水性(提升附著力)之目的及應用。在製程方面,本研究提出兩種製程方法,分別為超快雷射(Ultrafast laser)以及轉印(Imprint)製程,以此兩種製程方法,分別於鋁、銅合金表面,製備出具功能機制之微米級陣列溝槽結構,並以雷射共軛焦顯微鏡(Confocal laser scanning microscope, CLSM)及熱場發掃描式電子顯微鏡(Thermal field emission scanning electron microscope, FE-SEM)檢驗結構寬度、深度是否有達到設計的尺度需求,以及是否具有完整性與一致性。待鋁、銅合金檢驗完成後,將試片進行紀錄 1至30天的接觸角變化研究,以探討時間、間距和製程等實驗變因,對於相異合金材質(鋁及銅合金)之接觸角影響性。同時,本研究透過能量色散X射線譜(Energy-Dispersive X-ray spectroscopy, EDS)與X射線光電子能譜(X-ray photoelectron spectroscopy, XPS)進行材料分析,探討氧(Oxygen)與碳(Carbon)之比值的變化與液珠接觸角變化的關聯性,進而了解上述各項變因的影響性,以有助於將來在各種親或疏水化材料產品於生醫及能源之應用。Item 超快雷射製程技術於生醫功能性材料特性與元件應用之研究(2024) 吳奇軒; Wu, Qi-XuanItem 選擇性飛秒雷射結構技術於碳化矽基材之氣體檢測元件研究(2022) 陳家鏵; Chen, Chia-Hua本研究旨是利用選擇性超快飛秒雷射製程技術(Selective femtosecond laser structuring technology),其超短脈衝之非線性吸收及極低的熱影響區(Heat-affected zone, HAZ)加工特性,在碳化矽(Silicon carbide, SiC)基材進行多尺度複合結構之探討及氣體檢測元件開發。首先,本研究採用飛秒脈衝雷射於碳化矽表面進行製程,在剝離閥值(Threshold)為1.51 J/cm2,探討多發脈衝行為所產生之孵化效應(Incubation effect),其孵化係數為S=0.8667±0.035。同時,本研究使用不同能量密度進行雷射誘導週期性表面結構(Laser induced periodic surface structures, LIPSS),該結果顯示隨著能量密度提高,奈米波紋狀結構逐漸亂序排列;隨後以拉曼光譜量測不同能量密度對材料所產生之特性變化,當載流子密度(Carrier density)隨能量密度上升而增加時,所量測到的特徵峰向更高波數側移動且峰形變寬、峰值強度降低,表明分子的化學鍵長度與結構分佈發生變化。進一步,本研究描述了雷射誘導的載流子失衡行為,利用福克-普朗克方程式(Fokker–Planck equation)修改的時間相依雙溫模型(Two-temperature model, TTM),分析雷射剝離行為、電子溫度、晶格溫度與載子密度的暫態變化。在氣體檢測元件製備方面,本研究會利用選擇性飛秒雷射製作石墨烯(Graphene) SiC基材之加熱元件,在高溫度為132.9 °C,進行該複合檢測元件應用於一氧化氮(Nitric oxide, NO)檢測,其氣體響應值(Response)於50 ppm與300 ppm分別為6.5 %與19.2 %。最後,本研究利用石墨烯電極結構摻雜二硫化鉬(MoS2)之二維材料,使其產生高比表面積,提供更高的吸附能力進而提升檢測元件性能,相較於室溫環境下之檢測,顯示提升2.08倍的靈敏度(Sensitivity),完成飛秒雷射技術於碳化矽基材之氣體檢測應用研究。關鍵詞:飛秒雷射、碳化矽、週期性表面結構、石墨烯微熱元件、二硫化鉬、氣體偵測Item 飛秒脈衝雷射技術在牙周病診斷及植入醫材表面改質之應用研究(2024) 郭念芸; Kuo, Nien-YunItem 飛秒雷射製作可撓性聚醯亞胺異質結構元件於氣體檢測之研究(2022) 葉力維; Yeh, Li-Wei本研究是利用超快飛秒雷射(Ultrafast femtosecond laser)之超短脈衝(Ultrashortpulses)的特性,在聚醯亞胺(Polyimide, PI)薄膜基材,製作指叉狀電極結構(Interdigitated electrode structures)元件於氣體檢測(Gas detection),該超快雷射製程具較小熱影響區(Heat-affected zone),以能進行可撓性基材之結構製作。為增加此元件感測之靈敏度,本研究亦利用水熱法製成氧化鋅(Zinc oxide)奈米線結構(Nanowires),在飛秒雷射製程製作之石墨烯PI電極元件上,以成型新穎複合結構元件於氣體檢測,以增加感測響應值。本研究顯示該可撓性元件可避免受力而導致斷裂、破壞的現象,且當彎曲曲率半徑小於6 mm響應值仍屬穩定(誤差值±3%)。元件設計的微型加熱器方面顯示,在一氧化碳(Carbon monoxide, CO)氣體從室溫到85.6°C可縮短恢復時間為86.2sec;甲烷(Methane, CH4)氣體則從室溫到約86.8°C可縮短恢復時間為117.2 sec。因此,在氣體感測元件方面顯示,一氧化碳和甲烷氣體檢測於200濃度200 ppm,其元件在甲烷與一氧化碳氣之電性響應值會分別為20.7 %和120.8 %。藉此,本研究證明氧化鋅/石墨烯可撓性微性加熱元件於一氧化碳和甲烷氣體濃度具有良好的恢復性,分別在1000 sec和1600 sec可恢復至初始電阻值,且該元件靈敏度則在加熱升溫環境會別為0.6728與0.0434為最佳。透過此研究,將可提供飛秒雷射製程於氣體檢測元件之應用參考。 關鍵詞: 飛秒雷射、可撓性元件、石墨烯、奈米線、氣體檢測