以多維結構之微流體元件於糖尿病檢測之應用

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

奈微米製程技術發展不斷創新,進而可使元件的體積微小化、降低重量,同時提升單位面積的結構密度於產品的應用。目前微流體元件具有輕薄、價格低廉、即時檢測、可攜、樣本微量化和定量分析檢測的優點,將可有效獲得身體的資訊,在疾病初期獲得有效治療,也能有治療及疾病追縱的功能。本研究結合兩種奈微米製程製造微流體元件,以波長(Wavelength)為355 nm皮秒脈衝雷射(Picosecond pulse laser)製程,藉由探討不同雷射能量密度(Fluence)對玻璃基板寬度(Width)和深度(Depth)的影響,直寫長2 cm、寬2 mm、深度300 m的流道,並在流道上製作直徑400 m的微圓柱(Pillar)結構。另一方面,以靜電紡絲製程(Electrospinning process)在微圓柱上製作線徑為285 nm聚丙烯腈(PAN, Polyacrylonitrile)的奈米線,PAN奈米線會因微圓柱結構而形成三維奈米線支架,在微流體元件周圍塗UV固化膠,以蓋玻片封裝,並進一步進行細胞攔截測試。以肺腺癌細胞(A549)作為多種微流體元件攔截率測試之檢體,在細胞濃度為1.35×107 cell/mL下,以流量5 mL/hr流入0.2 mL,於僅有流道的微流體元件攔截率為41.54%,於同時具有流道和一維奈米線結構於微流體元件的攔截率為53.93%,於同時具有流道和三維奈米線結構在微流體元件的攔截率為100%,利用微流體元件捕捉細胞之功能捕捉紅血球(Red blood cell, RBC),具血液純化的作用,以能增加糖化血色素檢測的準確性,有效應用於糖尿病(Diabetes)檢測。
Since the innovation of the micro-nanotechnology, the volume of device can be miniaturization, reduced weight, and enhanced the density of structure per unit area. Because the advantages of microfluidic device are light thin, low cost, real-time detection, portable, sample miniaturization, quantitative analysis, people can obtain the information about their bodies from these. Hence, the patients can get effectively treatment early and also follow the recover from the illness. In this study, the picosecond pulse laser and electrospinning processes were used to formed the microfluidic device and nanowires, respectively. Due to the effects of the different fluence on glass substrate, it can fabricate the structure device with the different width and depth, laser ablated channel (length 2 cm, width 2 mm, depth 300 m) and micro-pillar (diameter 400 m). And then, the formed Polyacrylonitrile (PAN) nanowires scaffold can be on micro-pillar by electrospinning. Here, microfluidic device was engaged by UV glue and driving by syringe pump. Finally, microfluidic device can test based on intercept rate by adenocarcinomic human alveolar basal epithelial cells (A549). When the A549 concentration was 1.35×107 cell/mL, the microfluidic device indicated that only channel intercept rate was 41.54% and the channel with one-dimensional nanowire structure microfluidic device intercept rate was 53.93%. Additionally, the channel with three-dimensional nanowire structure microfluidic device intercept rate was 100%. Therefore, the design of microfluidic device was able to capture the red blood cells (RBC) in order to purify blood and increase glycosylated hemoglobin sensing for diabetes detection.

Description

Keywords

皮秒脈衝雷射, 靜電紡絲製程, 微流體元件, 奈米線, 糖尿病, Picosecond pulse laser, Electrospinning, Microfluidic device, Nanowire, Diabetes

Citation

Collections

Endorsement

Review

Supplemented By

Referenced By