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Abstract

This article is concerned with the special trajectory v (x; &) which is the leading term of the asymptotic
solution of Van der Pol equation )C"+,LDC'()C2 —1) + x = Oin the phase plane for some region. We show that
in the phase plane, the difference of this asymptotic solution and the limit cycle of Van der Pol equation is not
greater than O(‘qu)as (1 —>+0 for all =1 < x < 0. Using this result, we can show that every

trajectory of Van der Pol equation starting from y-axis with initial value bigger than that of the limit cycle gets

close to the limit cycle by O(,l[H3

U —> +o0.

Key words: Van der Pol equation, limit cycle

)from its first time on intersecting X =1 in the four quadrant as

1 Introduction

Let us consider the well-know Van der Pol
equation x"+4x'(x* =1)+ x =0, where x'=dx/dr.
It is easily to see that the Van der Pol equation is
equivalent to the following equation

X(6) = y(t)
Y0 = =x(6) + p(=x(t) +1)y(2)

in the phase plane, called the Van der Pol equation in the
phase plane.

The study of the unique periodic solution of the
Van der Pol equation was started by Van der Pol. The
behavior of the periodic solution of the Van der Pol
equation exhibits a relaxation oscillation as the
Therefore, there are
researchers investigating the asymptotic behavior and
the numerical solution of the periodic solution of the
Van der Pol equation with £z >> 1 (Ponzo and wax,1965;
Andersen and Geer, 1982).

In this article, the asymptotic method was used to
analysis the phase path of the Van der Pol equation in
the phase plane. We define a special trajectory, called
the critical phase curve y _ (x; p) which is the solution of
the following scalar equation

parameter 2 >>1 many

DXy a-x).
dx v

The critical phase curve Yo, (v; 1) is related to the
asymptotic behavior of yp(x;u) which is the
corresponding phase path of the unique periodic solution
of the Van der Pol equation. There are three major work
in this study as following:

(1) y, (=L )=y, (1) =0 "'") . This result
confirms that the leading term of the asymptotic
solution Yo (x;#) is not only a good asymptotic
solutionupto x =-1+ ,u_”3 , but also to x=—1.

@ v, -y, (u)=0w""?) , for
all-1<x<0as y— +w.

(3) In the phase plane, every phase path of Van der
Pol equation, say y(y;u), with y(0;u) >y, (0;u),
gets close to the limit cycle from its first time on
intersecting x=1 in the fourth quadrant.

This article is organized in the following structure.
In section 2, we prove the existence and the uniqueness
of the critical phase curve y_ (y; u) forall 2> 0. And
then, we estimate y_(y;u), for —1<x <0, and
u>>1, in section 3. Moreover, we also prove that
Yol 1) =y, (x; 1) = Ow™""7), forall-1<x<0
as g —> +oo. Finally, we have a concluding remark in
section 4.
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2 Some elementary properties of the critical curve y_(x;u)

In this section, we look for positive solution of the
scalar equation

dy x

= =T u(l-x%) 2.1
Yy

dx

with the condition y, (x;u) >0,Vx<0 , and
lim y(x; ) = 0. For simplicity, we set
o z=-x, (2.2)

so that the scalar equation (2.1) can be transformed

into the following equivalent equation
Yo, (2.3)
dz b%

We will use shooting argument to analysis this
equation. Let y(z,a;u) denote the solution of Eq.
(2.3) with the initial condition y(0,a;u) = a.
Let J, be the set of the initial value

v(0,a;u)=a >0, for which y'(z,a;u) vanishes

at some finite number R >0 before y(z,a;u) does.

We also let [ _be the set of the positive initial values
for which the corresponding solutions are monotone
decreasing until they cross the z axis.

Firstly, we show that [/, is not empty.

Lemma 2.1 Let y(z;u) be a solution of

equation (2.3), and there exists z, >1 such that
29
2
,U(ZO - 1)
(1) y(z;pu) strictly increases on [Zo +oo) and

y(zysu)= . Then we have

lim y(z; ) = +o0.
(2) y(z; 1) strictly decreases on [O, ZO].

Proof.
(1) By the assumption and (2.3) we have

Y2y ) = —2—+ p(z] ~ 1) = 0,and
y(zys )
n 1 1
V' (zgsp) = —————+ 2z, = p(zy +—) > 0.
Wzgs 1) z,
Hence there  exists 1>>&>0 such  that

Y(z;u)<0, Vze(z,-¢,z)) and y(z;u)>0,
Vz € (20,2, + ). Since (zg3 ) = 2, /|22 ~ )]

and Z/Lu(z2 - 1)] decreases on [1,00), it follows that

Z
y(Z,/l) >—m, Vz e (ZO,Z0 +€).

On the other hand, long as

y'(zzu)>0 as
y(zy i) > z/[,u(z2 - 1)j and z >1. Consequently,
y(z; p) strictly increases on [z(,,b), where y(z; 1)
is defined.

Next, we will prove that y(z;)is defined on
[zo,+00). If not, then there exists +o© > b >z, such

that lim y(z; 1) = +oo, limsup y'(z; 1) = +o.
x—>b"

x—b"

However, from (2.3), we have

—Z

lim sup y'(z; u) = limsup +u(z’ -1
x—b" x—b~ y(Z, ,u)
=ub’~1)<w,
a contradiction. Hence, y(z;u) is defined on

[2y,+0).

Finally, we show that lim y(z;u) =40 . If not,
Z—>+o

since y(z;u) strictly increase on [ZO,+OO), then

there exists ¥ >0 such that

lim y(z; i) = r, liminf y'(z; u) = 0.

X—>+ac

On the other hand, by (2.3), we have
-z

liminf y'(z; ) = liminf ————+ u(z> =1

P o (25
= 40,

a contradiction. Therefore vl_i}rg W(z; ) = +o0.
(2) Note that y'(z;4) <0 on [z, —&,z,). Firstly,
we prove that y(z;u) is defined on [1,20] and
y'(z;u) <0 on [1,20]. If not, then there are two
cases. One case is that there exists z, >c¢ =1 such
that y'(z; 1) <0 in (c,z,) and y'(c;u)=0.
Then

(s 1) = lim 2 U -y o
z—c’ zZ—C
However, by (2.3), we have
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1
yiep) =- +2pc < p(e+—) >0,
C

y(c; u)

a contradiction.
By the same argument as in (1), the other case for

which  there  exists Zp>c2>1 such  that

lim y(z; ) = 0 is  impossible. Consequently,
¢

V(z; u) is defined and strictly decreases on [l, Z, ]
Next, we observe that y'(z; ) <0 as long as
v(zzu)y>0 and 1>2z2>0 . Also, by the same
argument as in (1), there does not exist 1>d >0
such that ling w(z; ) = +o0. Hence y(z;u) is

defined and strictly decreases on [0, z, ]

From Lemma 2.1 and continuous dependence on
initial data, we have:

Corollary 2.2 [, is nonempty and open.

Lemma 2.3, There exists C >0 depending on a
positive number £ such that, for a € (0,C), the
solution y(z,a;u) of equation (2.3) with initial
condition y(0,a; ) =a vanishes at some finite

number R, 1>R>0 and y'(z,a;u)<0 in
[0,R).
Proof.

2
Set CZE,U. We will show that Va € (0,C),

the solution y(z,a;u)of (2.3) with initial condition

y(0,a; u)=a has the required property. From

equation (2.3), it follows that y'(z,a; u) <0 as long
as y(z,a;u)>0 and 122z >0.Thus if y(z,a;u)
does not vanish for 1> R >0, then y(z,a;u) is
defined and y'(z,a; ) <0 on [0,1].

Integrating equation (2.3) from O to 1, we have

-z 2 2
————u<a-—u<on,
w(z,asp) 3 3

a contradiction. Therefore, y(z,a; ) vanishes for
1>R>0 and y'(z,a;1) <0 in [0,R).

Lemma 2.4 Let y(z,a,;u) be the solution of
equation (2.3) with initial condition
¥(0,a,; 1) =a, >0 suchthat y(z,a,;u) vanishes
at a positive number R, >0, and y'(z,a,;u)<0
in [0,R,).

Then

ybapy=a+ E

there exists & >0 such that for

la - ao‘ < &, the solution y(z,a; i) of equation (2.3)
with initial condition y(0,a; &) = @ vanishes at some
finite R >0 and y'(z,a;u)<0 in [O,R).

Proof.

The proof consists of two cases.

Casel, consider 1 2 R, > 0.
By continuous dependence on initial data, there
e>0 and 1>>06 >0 such that for all

’a~a0| < g, we have
VAR, - S.azp) < |l- (R, —8)*}/2, and
y'(z,a; ) <0 in [0,R, —O).

We will prove that y(z,a; ) has to vanish for
1>R>0. It follows from (2.3) that y'(z,a; ) <0
as long as y(z,a;u)>0 and ze€ [O,l]. Hence, if
v(z,a; i) doesn’tvanishat 1> R >0, then we have
y'(z,a; 1) <0 in [0,1], and then
y(z,a;u) < y(R, —0,a; 1) in [RO - 5,1]. (2.5)

Integrating (2.3) from R, —0 to 1 and using
(2.4), (2.5), we have

yv(Lasu) =

R, —0,a;u)+ ——ds
y Y J:‘“‘y(s,a;#)

<Y (R, - 8,a;u)+ ————————ds
(R, ) J;O_ﬁy(RO_(S’a;m

_YR-Sam-l-®,-57|2
V(R = 6,a; 1)
y(z,a;p)

exists

+ J;O’(S,u(s2 —Dds

)

2

a contradiction. Hence vanishes at

1>R>0.
Casg 2, consider R, > 1.

k= ~—~1—§0———~, and let b > R, such that
(R ~1)

= k)2

b’ )

By continuous dependence on initial data and
V(Ry,a,; 1) =0, there exists &> 0and 1>>6 >0

such that for all ‘a — ao‘ < &, we have
V(Ry—S,a; ) <k/4, and  y(R,—S,a;p)+
R’ b’ k
H(=Ry +—>+b——)( -1
3 37 2y(R,-b,a;1)
<0, (2.6)

and

y'(z,a; 1) <0 in [0,R, - 5].
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We will show that y(z,a;u) has to vanish at some

finite number > R >1. From (2.3), it follows that

y'(z,a; 1) < Oas long as y(z,a; ) < z/l,u(z2 —1)J

and z >1. Hence, if y(z,a;u) does not vanish at

R > 1, then from the definition of b, it follows that
y'(z,a; 1) <0 in [0,5]. Thus,

-1 =
/u vl bl vl 50
yz,au) YR, —6,a;4)
By the definition of b, this is equivalent to the
following

z S ku(z’ -1)
Wz ap)  2¥(R, = 8,a;4)

Integrating equation (2.3) from R, —0 to b and
using (2.6), (2.7), we have

yv(b,a; 1) = y(R, = 6,a; 1)
+ Jzo_amds +J:0_§,U(S2 ~1yds
< y(Ry —9,a; 1)
B Jb ku(z® -1)
o= 2y(R, — &, a; 1)
S y(Ry—6,a;1)
3

R b’
— (R, +—2+b——
(=R, 3 3)(

in [R,-5,6]. @7)

2
+ J: M5 =ds

k )
2Yy(R,—0,a; 1)

<0,

a contradiction. Hence y(z,a;) vanishes at
R>1.

Lemma 2.5 There exists & >0 such that the
solution y(z,a; ) of equation (2.3) with the initial
condition y(0,a;u)=a satisfies the following
conditions

hm_,_ y(z,a; 4) =0 and
y'(z,a; 1) <0 in [0,4)
Proof.

Let a, =inf/,,a, =sup/_. By Corollary 2.2,
Lemma 2.3 and 2.4, «,,, are finite numbers and
I,,I_ are open. Hence from the definition of 7 ,/_
and Lemma 2.1, it follows that

lim,_, y(z,a;u)=0, i=12, and

y'(z,a; 1) <0 in [040), i=12.

In the next lemma, we will show that «, =, .

Lemma 2.6 There is at most one positive number
o >0 such that the solution lim___ y(z,o; )=«
satisfies the following conditions

lim_, y(z,a;u)=0,and
vi(z,a; u) <0 in [0,+00).

Proof.

If not, then there exists a; > &, >0 such that
wz,a; i), y(z,a,;u) are solutions of (2.3)
satisfying

lim,__ y(z,a,;1)=0, i=12, and
V'(z,a;1) <0 in [0,40), i=12.

Then, we have

d
Lz, 0) =~ ru -1, 29
dz

y(z,a; 1)
and
dy o )
_(Z,a27:u)—_———+,u(z _1)7 (2.9)
dz y(z,a,; 1)
Set

fzw = y(z,a;0)— y(z,a,; 1)
Subtraction (2.9) from (2.8), we have

df z
——(z1) = fzm).
dz y(z, 05 )y(2, 055 1)

It follows from (2.10) that df /dz >0 as long as
f(z; 1) >0 and z > 0.Hence

(2.10)

y(z,a; 1) —y(z,a,; 1) 2 y(0,a,; 1) — y(0,a,; 1) > 0.

On the other hand, by assumption, we have

lm y(z,0,; 1) = y(z,a,51) =0,
a contradiction.

From Lemma 2.5, 2.6 and equation (2.1), (2,2),
(2.3), we have the following theorem. Note that the
solution of equation (2.1) with initial condition a is
denoted by y(x,a; ut).

Theorem 2.7 For each g >0, there exists a
unique positive number S such that y(x, f;u)
which we also denote by y_(x;u) satisfies the
following conditions:

(1) lim y(x,B;4)=0, and y'(x,B;4)>0 in

(— oo,O].

(2) Foreach a € (0,8), y(x,a;u) vanishes at some
finite number R <0 and »'(x,a;u)>0 in
(r,0].

(3) For each a > 8, there exists a unique number
r <0 such that y(x,a;u) has the following
properties:
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@ y(r.a;m) ==r/lue? -0} yirap=o.
(b) y'(x,a; 1) <0 in (— o r] and
lir_n y(x,a; p) =+00.

© y'(x,a;u)>0 in [r0].

3 Estimation of y_(x;u)
3.1 Some properties of a related differential
equation
Since y_(x;u) would change sharply near

x=-1, we introduce the following rescaled

coordinates:

y=uln =14 u¢ . 3.1
In this coordinate, Eq. (2.1) in phase plane can be
transformed into
nn' =28n+1-pu P (E+E). (3.2)
where 7' =dn/d& . Note that the zero isocline
of Eq. (3.2) is

n
FE )=t )

25+

Since the coordinate transformation (3.1) is linear.
Thus, there exists a unique solution of (3.2) which
shares the same qualitative properties with y_ (x; 1) .
Actually, we have the following proposition. Note that
the solution of Eq. (3.2) with initial condition a is
denoted by n(&,a; u).

Proposition 3.1 For each u > 0, there exists a
unique positive number [ such that (&, B; 1)
which is also denoted by 7, (&; 1) satisfies the
following conditions

(1) lim,_, n(&, B 1) =0, and

7'(& Biu)>0 in (~0,0].

(2) Foreach a € (0,8), n(&,a; 1) vanishes at some
finite number R <0 and 7'(&,a;u)>0 in
(R,0].

(3) For each a > 3, there exists a unique number
¥ <0 such that n(&,a; 1) has the following
properties

@ 0@ =1+ 5 -n)f l2(—r) +p ]
n'(ria;u)=0.

® 7' ap)<0  in
Jim 7, a; 1) = +eo.

© n'(&a;u)>0 in [r,0].

The proof is similar to Theorem 2.7.

(— 0, r] and

Now, we are in position to get some information
about y_(—1;u), and 71_(0; ). It may be evident
from equation (3.2) that the behaviour of solutions near
& =0 are dominated by the following equation

nn' =2&n, +1 where 1) =dn, /dE. (3.3)

Note that the zero isocline of Eq. (3.3) is

1
2(=¢)

This equation can be solved in terms of Bessel
functions or Airy functions. The interesting qualitative
properties of Eq. (3.3) which are almost identical to the
properties of the untransformed equation (2.1) are stated
in the following proposition. Note that the solution of
Eq. (3.3) with initial condition a
m(s,a).

Proposition 3.2 There exists a unique positive
number f_ such that 7,(&,B,), also denoted by
1, (&), satisfies the following conditions:

(1) 1im§—>-oo 771 (g’ﬂw) = O’ and

m(& B.)>0 in (~0,0].
(2) For each a € (0,5,),n,(£,a) vanishes at some
R<0 and 7n/(£a)>0 in

is denoted by

finite number

(r,0].

(3) For each a > [3_, there exists a unique number
¥ <0 such that 7,(£,a) has the following
properties
() n,(r,a)=1/(=2r), n,(r,a)=0.
®  7&a)<0 in (-] and
flim n, (&,a) =+
©) n(&a)>0 in [r,0].

Next, we state some quantitative propositions about

Eq.(3.3).

Proposition 3.3
(1) B, is equal to Ai'(—w) at first zero, where

Ai(w) is the well-known special function, Airy
funcion.

2 fm 1/1,,(E)dE =a, — B, , where a,, is the
first zero of Ai(—w) .

€)
. ° 1
il em et

Proof.
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Since this equation can be solved by means
of table, thus we just outline the procedure of

dg

how to solve it explicitly. Set 7, =—.
®

Substituting this expression into (3.3), we have

ﬁﬂ—z _‘g_*_l

dé dé& dw
Consequently,
d
771:—§=§2+a). (3.4)
do

Eq. (3.4) 1s one of Riccati type and can be solved
explicitly by means of the transformation

v'(w)
E=— (3.5)
v(w)
where, U(@) satisfies the so-called Airy equation
V"+ov=0 (3.6)

where, V" = dZL)/da)2 )

This equation has two independent solutions,
Ai(—w) and Bi(—w) in the standard notation, and
its general solution is the linear combination of the
above two special functions.

(1) we have
Ai'(~)
Mo (6) = ———7——-
Ai(-w)
Note that Ai(—w) is exponentially small as
@®W—>—00 , rises to a maximum at
w=p,=1019... , and becomes zero at
w=a, =2338....
) [w 1/n,, (&)dE is  well-defined,  since
N (E)~E? as £ —+0 . Moreover, from

equation (3.4), it follows that

= 1 e dE
¥ mw@)dg"f £+

(3) By Eq. (3.4) and (3.5), we set
_ Ai'(~w) +bBi'(-w)
Ai(-0) +bBi(-w)

Note that 7,(£, ) is the solution of (3.3) with
the initial condition 7(0,)= £, and that for all
lﬂ — ,Bw’ <<1, n,(&,B) can be defined on [O,+oo).
Hence, from Eq. (3.3), (3.4) and (3.5), we have
Ai'(-pB)+bBi'(-p)=0, Ai(-a)+bBi(—a)=0.
Where, @ is a real number such that & — 400 as

= j;:da) =a, - p,.

Tai-Yih Tso

@ — « . Consequently, we have
Ai(-a)  Ai'(-p)
Bi(-a) Bi'(-f)

Equation (3.7) can be viewed as an equation with

argument [3, where @ is viewed as a given parameter.

Consequently, from the regularity of Ai(—w)/Bi(-®)

and Ai'(-®)/Bi'(-®) at «,, B, respectively,

and a=a_,f =0, satisfying (3.7),

a—>a, as f— f,and this implies

. o 1

Iim | ————dé=a_ -0, .

ﬂ_)ﬁ"[ m (gaﬂ) g ’ ﬁw

3.7)

we have

3.2 Estimation of Vo, (—1; 40)

The following lemmas are mainly based on the
comparison theorem for differential equation and some
special functions. Thus for convenience, we state the
comparison theorem for differential equation in the
following.

Lemma 3.1 (Comparison Theorem)

fl(ts-x)7fz(t,x) are

functions of the scalars ¢,x in some open connected
set Q of R”, satistying f,(£,x)2 f,(¢,x), and
£,(0),£,(0)
differential equations

dx dx

o S1(t,x), 7 £ (%)
respectively, with the same initial condition

£.(t,)=14,(,)=x,

£,,0, defined on the
a<t<b(-wo<a<bs<+w) and ¢, €(a,b), then
we have £ (2)=/,(t) for all t=t, in (a,b).
Similarly, we have £, (t)<¢,(¢t) for all t<¢, in
(a,b).

With the aid of Proposition 3.2, we can estimate the

Suppose real-valued

are the solutions of the following

where are all interval

lower bound of 77_(0; ). Recall that 77 (&5 u) is

the solution of (3.2) which satisfies Proposition 3.1.
Lemma 3.2 For each 1 > 0, we have
1.0, ) > f3,,.
Proof.
If £<0,n <1/(1—c§), then
26 +1-pu 23 E(En+1)> 280 +1.
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Consequently, if £<0 and -£ small, then it
follows from Lemma 3.1, Eq. (3.2), (3.3) and
Proposition 3.2 that

Wi <mlE ) =maO< =z BB

Moreover, (3.8) is always true as long as
V(=&)>n& B u)>0 and £<0 . Hence for all

£<0 such that 7(&, B.; 1), n.(E) are defined, we
always have

(&, B.. ;u)<j2—§ (3.9)

Recall that |1+ 42" (= E)/[2(= &)+ 1 2&* | and
l/(— Zf) are the zero isoclines of Eq. (3.2), (3.3)
respectively, and for all £ <0, we have

L a8
22 g
Thus, it follows from (3.9) and Proposition 3.1 that

77(5, B..; y) has to intersect with & axis at some finite
number R<0. Hence

7..(0, 2)> 1(0. B 1) = B..

is achieved.

For estimating the upper bound of 7..(0;x), we
draw our attention to the following equation for a
moment

namy =2En, +1+ 773 (3.10)
where 775 =dn, /d& . Note that the zero isocline of
Eq. (3.10) is
1+‘u~l/3
2(=¢)

It is easily convinced that Eq. (3.10) has similar
properties as equation (3.3). Thus let nzw(f; /1) has
similar meaning as 7,.(¢). The following estimate is
our required upper bound for 7..(0; x).

Lemma 3.3 For each x>0, we have

Y > 1.0 1) (3.11)
where y, is a positive number such that
1/3 . _ -1/3 -1/3
m- "y )=l L+ 2.
Proof.
If >0 and —u'3 <£<0, then we have

2n+1-pREEn+1) < 2Un+l-plé
<2&p+1+ 47"’ It follows from Lemma 3.1, Eq.
(3.2) and (3.10) that 7{¢,y,; )>n, (.7, )

where —u'?<£<0 and Y4 is a positive number

such that 772(—;1“3,;/#;;1):[/1 (1+,u‘“3) 2.0n
the otherhand,

-1/3
f(_#l/s;ﬂ)___ 11:;;“3 <[,u‘”3(l+,u‘”3)l/2

=l p i)
<nl-sy,5u)
where f(g";,u) is the zero isocline of Eq. (3.2).
&7 ,u)
monotonically to +oo ,as & — — . Thus we have
Y =10,7 5 1)>1..(0 ).

Combining the above two lemmas, we can estimate

Hence, by Proposition 3.1, tends

e (O;y) for any u >0. However, it is not a easy task

to calculate the magnitudes of y, and /[, . Butto our

surprise, we have the following qualitative result.
Lemma 3.4

lim 7.,(0; )= f.., and
H—>+oo
lim y, = lim §, =4,

H+oo H—rtoo

where, &, :(1+;f”3)_2/3
Proof.
set 8, =143y, (3.12)

It is easy to check that nz(f,yﬂ;y) and

(1+,u””3)A2/3771((1+,u"”3)_1/35,5#) are all solutions

of Eq. (3.10) with the same initial condition ¥ .- Hence,

e

—2/3

we have
mleruinl=liau " Fon {0, ).

From Lemma 3.3 and the above equality, we have
2+ w2 2=, 1 s )
:(1+ﬂ—1/3)2’3”1(_ﬂ1/3(1+ﬂ-1/3)‘“3,5#)_
Thus
771(_ﬂ1/3(1+ﬂ—l/3)—1/3’5ﬂ)
= Ltl_1/3(l+ﬂ_1/3)_1/3J/2 . Note that
(—,u”3(1+,Ll‘”3)_1/3,Ltt_”3(1+ﬂ_”3)“31/2) lies

Z1/3\173
on the curve 2&n+1=0, and —,u”3(1+,u 1/3)

—> —oo_ Thus it follows from Proposition 3.2 that
O, > B as f—>+eo.

Finally, since y, = (l+,u_”3 )2/35 and the

/‘ k4
inequalities for 77, (0; ,u) in Lemma 3.2 and Lemma 3.3,
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we have
N.O;) = B, as pu— +oo.

Corollary 3.5 For u>>1, we have

(a)
Vi~ B =O(/“_1/3)'
(b)
7.0 )~ B =0lu™"?), that is,
ym(—l;,u)—ﬂmﬂ_m :O(ﬂ—zw).
Proof.

(a) For n (f,é'#), we can proceed as in the
proof of Proposition 3.3 and write

_ _ aAi'(—w)+ bBi'(w)
£=4lw)= aAi’(-w)+bBi'(w)’

Moreover, we have
b A4,

a Bi'i—(fﬂi

where, &, is defined by (3.12). Set

(3.13)

g=u & =(1eum )",

t, = Lu_ll3(1+ﬂ_”3)1/3V2_ﬂ2/3(1+ﬂ_”3)_2/3-

Since Oy satisfies the equality
ﬂl(_ﬂlu(l+ﬂ—1/3)‘1/3,§#)

= lﬂ*1/3(1+/f”3yl3l/2, then from Eq. (3.4) and
(3.9), the following equality is held
g aailr,)voBil-1,)
T a1, )vbBil1,)
where,

(3.14)

_ &Bil1, )+ &Bil-1,)
A )
. f,Ai(—t# )+ §2Ai’(—tﬂ )
A
A= Ai'l-t, )Bil~1, )- Bi'-1, )Ail-1, ).
Therefore, it follows from (3.13) and (3.14) that we
have

’

A8,) b gt )rsartn) (3.15)

Bil-6,) a &Bil-1,)+&Bil-1,)

Since ¢, approaches —eo as g —> +co, thus we
consider the asymptotic series of Ai(x), Bi(x) for
x>>1 as stated in the following

. et = u
Aifx)~ SV 2 14 SEO(_I)J gvss ’
’ =< - v
Ai'lx)~ - 1?2 174 S (_1)5_13_’
2 x 5=0 4
. et o u

Bi{x)~ L1214 FOES:_’

4 o K
Bi'(x)~ - 1/2e Ciia o (-1 Vs
Tix s=0 ¢

where
} _(2s+1)2s +3)25+5). {65 1) L, o b+l
! 216° ! T s+l

2
ug =vy =1, sz1, (=§x2/3.

With the aid of this device, we can rewrite (3.15) as

Arl-8,) _gail-r, )+ gail-1,)
Bi(-6,) £&Bil-1,)+&Bi(-1,)
_ 0(6_4”/3)

(3.16)

Ai'(—1) .
BC1) at B is

Note that the Taylor series of

SBACB) 4,
57 (e~ A4.)
(_ [/ﬁAi(— (L )Bi)(— B. )]
Bi(-B.)
+0(r—-B.) (3.17)

Thus if follows from Lemma 3.4, (3.16) and (3.17)
that

N Ai(- B.) PR
2Bi'(- ﬂm)]( £)

8, = B +0le™"), and
Y - B +O(/l_“3)-

(b) Combining the result of (a) with the inequality

Voo > 1 (03 12)> B
we have
7.(0s1)- B =0(u™"?).
Moreover, if follows from (3.1) that
ym(—l;#)—/l—mﬂm =O(/1'2/3).
(¢) Combining the result of Cartwrigh(1952), we
have

yp(—l;/l)—/l_mﬂw =O(/f”3).

Hence, we arrive at the surprised result
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v, (- 4)=yo (L 4)=0lu").

This result confirms that this leading term of the

Yol pt)
asymptotic solution up to x=-1+y

is not only a good
13 but also to

asymptotic solution,
x=-1. Moreover, from the theorem of continuous
dependence on initial value of solution of differential
equation, we can expect that the behaviour of the limit
cycle of Van der Pol equation is closely related to that of
vo(x;u) when u>>1.

3.3 Estimation of y_(x;u) for —-1<x<0

Lemma 3.6 For & >>1, we have

(D
) 143 1 B ~
nly et
(2)
7. (ﬂus;ﬂ):aw ﬂ1/3/3+ﬂ2/3 +O(l).
Proof.

() If £>0,n>0, then we have
2§n+1>2577+1—,u’2’3(§277+§).
Thus by Lemma 3.1, Eq. (3.2) and (3.3), we have

N (&)< m(Em. (0 1)) in [040). (3.18)
Let us consider the following equation
sy =2 - Jemy + - u3), (3.19)

where 75 =dn,/df and p>1. It is easily

convinced that Eq. (3.19) has similar properties as
Eq. (3.3). Let 75, (f;u) has similar meaning as

(&) and 7,(£,a,u) be the solution of Eq.
(3.19) with the initial condition 773(5,61;,”)2
When 4!'3>£>0 and 7>0, we have
2§n+1_ﬂ—2/3(§2”+§)>(2_ﬂ—1/3)§”+(1_ﬂ—1/3)_
Therefore by Lemma 3.1, Eq. (3.2) and (3.19), we
have

(& (0 s ) < (& ) in (0, 3],
It follows from Eq. (3.18) and (3.20) that

(3.20)

P 1 13
———df ————df
! 7(&7m.. (0, 1)) <k (&)
‘ul/3 1
< d¢ .
! (& (0 ) )
Dividing equation (3.3) by 7, and noting that
7 (&.1..(0; 1)) is a solution of (3.3), we have

AnEn.Om) e 1
dZ 2%+ m(&n..(0; 1))

(3.21)

>2£,

vE>0, (3.22)

and so (& O u)>E2, VE20 . It
follows from Proposition 3.3, Lemma 3.4 and (3.22) that

)

'[’ull3 1
o & n.(Ou

< M——dl -\ -
I m (&m0 1)) ¢-la. ﬂw)‘f

o 1
+

L‘”——m XTI

<Oll O

(2] ez =0l

We also have

75(&7...(0; 42}, 1) .
(1 P 1/3/2) lu-1/3) X 17, %
1

(1-
[a)(l_ﬂal/,%)ﬂuf,_%} (3.24)
w( _lu~1/3)

L1anN2/3
where, @ = (1-— el ) .
2

Since both sides of the above equality are solutions
of (3.19) with the same nitial condition 7., (0; ). Then,
proceeding as in (3.23) and noting (3.24), we have

#1/3 d§ ( *
(.- B.)=0() (.25
! 7,(&7..(0; s 1)

Hence, it follows from (3.21), (3,23) and (3.25) that

1/3

“ 1
jo 1. (& 1)

(3.23)

1/3

dé::aw_ﬂero(l) as ﬂ"%+°°.

(2) Note that 770,(5;;1) satisfies (3.2), that is
1. 1)l (& 1)

=28, (Ep) +1- w3 (E+ En (& ). 326)

Dividing equation (3.26) by 7.(&u) and

1/3

integrating it from O to x''°, we have

m(ﬂ”ﬁﬂ) n(0,1)+ 14 — 1" 13d¢

ﬂl/a 1/3 2/34:
H[ e - _[0 (3.27)
7. 5 #)
Next, by part (b) of Corollary 3.5, we have
7. (0 )= B.. +0(u"73). (3.28)

Moreover, from part (1) of this Lemma, the following
inequalities are held:

143

S S 3.29
J;) ﬂw(f;/l)f a. ( )

- p. +0(),
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and
#113 ,U_Z/}f f\ ’u_]/3 1 é
o n.(&u) o n(&u)
= 0(;{”3). (3.30)

Substituting (3.28), (3.29) and (3.30) into (3.27),
we have

7700(}4”3 ﬂ) o — ' 134 p2l +O(l).

Corollary 3.7 For u>>1, we have
yw(—1+,u ”3,,u) ~1/3+a_u'"”
+,U1/3+O(/l_”3)-
Proof.

It follows from part (2) of Lemma 3.6 and the
transformation rule (3.1) relating the x—y and £-7
planes.

Lemma 3.8 For u>>1, we have
(a) y. (O;y)z a.u? 2,u/3+0(;4_”3 )

() 5 (0:20)- y..(0:)= 072,

© v.(xu)- ym(x;,u):O(,u"”),—ISxSO.

Proof.

(a) Since yw(x; ,u) is a solution of (2.1) and decreases
on (-o0,0], then we have

2 dym(x;,u) —X
ﬂ(l X )S dx = ym(_1+‘u—1/3;‘u)'
ull-x*), vxe|-1+477 0]

Integrating this inequality from —1+x"? to 0,
we have
2ul341/3- " <y (O ) -y (1417 )
1+ -1/3
<2u/3+1/3-p'? 1+ p _”3) _
2y(- 1+ p7" )

Combining the above inequality with Corollary 3.7,
we have
yw(O;,u): ’3+2,u/3+0(ﬂ_”3).and
v, (0 ) = o™ 4201340 ).

(b) Hence, it follows from part (a) of this Lemma with
the above equation, we arrive at our result.

(c) Since y.(x;u) and y » (x; ) are all solutions of
Eq. (2.1), then it follows from Eq. (2.1) that the
difference between y.(x;u) and » (xu) is
dominated by the following equation

yo(u )=y,

~ya(ru)y,

(s 42)

()

(yalms)=y, b)) =

Hence y. (x;u)-y v (x; ) decreases on (—,0].
Then it follows from part (b) of this Lemma that

Voo (x;ﬂ)—yp(x;,u)z O(/f”3 ), Vxe[-10].

3.4 The proof of the main theorem
Firstly, we state a lemma from Ponzo and Wax
(1965) in the following Lemma.
Lemma 3.9 For 4 >>1, every solution y (x,a;x)

(0;,u)+0(;1‘”3)

of Eq. (2.1) with initial value a=y,

o).

By Lemma 3.8, 3.9 and similar arguments as in

vanishes at 2+ a' ,u

part (c) of Lemma 3.8, it is easily convinced that we
have the following corollary.
Corollary 3.10 For i >>1,

(@) y..(x;u) vanishes at 2+aw/4'4’3/3+0(,u‘4’3),

(b) yw(x;,u)—yp(x;ﬂ)=0(,u_“3) for all x>0 such
that y.(x;u) and yp(x;,u) are defined.

Now, we have enough information to get our main
result, that is,

Theorem 3.11 In the phase plane, every trajectory
y(x, B;u) of Eq. (1.1) with initial value B bigger

than that of limit cycle, yp(O;ﬂ), will get close to the

limit cycle with error not greater than O(ﬂ_l/ 3) from

its first time on intersecting x=1 in the fourth
quadrant.
Proof.

Since equation (1.1) and (1.2) are symmetric with
respect to origin,we have results similar to all the above

lemmas for y<0 .Hence from Theorem 2.7 and
Corollary 3.5, y(x,ﬂ;,u) is only bigger than yp(x) by

O(/[” 3). Furthermore, from Theorem 2.7, part (c) of

Lemma 3.8 and part (b) of Corollary 3.10, this theorem
is proved.
4 Conclusion

In this paper, we discuss some properties of a
special trajectory, ., (x; u), of Van der Pol equation in
the phase plane, and use these to see that a solution of
Van der Pol equation with initial value bigger than
Yp (O) will get close to the limit cycle for 4 >>1 from

the point at which this trajectory cut x =1 in the fourth
quadrant. However, we don’t calculate how much time
this solution takes to get close to the limit cycle.
Conceming this question which is also the stability of
Van der Pol equation, the first problem we meet is how
much time the solution with initial value bigger than
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y p(O) takes to intersect the positive x-axis. For this, it

concerns the behaviour of the differential equation (2.1)
in the first quadrant, and needs finer analysis for any
solution curve with initial value bigger than y, (0). The

second one is that the solution curve of equation (2.1)
starting from the positive x-axis has to confine between
v..(x; 1) which is meant to be the corresponding part

of y.(x;u) for y<0,and the implicit curve
2;ny3 +y? +,le(x2 —-l)y+x2 =0, at points of which
the second derivative of the solution of equation (2.

1) is equal to zero. And it is easily convinced that
when going through the negative x values, every s
olution curve of equation (2.1) starting from the po
sitive y-axis and touching this implicit curve will in
tersect the negative x-axis, and these two curve are
very close for x<-1. However, it is not a easy t
ask to calculate the approximating time, that is, the

integral J'dx/ y where (x,y) satisfies the equation

of the implicit curve.
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