發酵食品中耐酸、耐膽鹽及 耐鹽乳酸菌之篩選

馬瑪宣*蘇淑菁游凱迪 王筱筑 魏思齊臺北市私立復興實驗高級中學

壹、前言與研究目的

細菌和我們的生活息息相關,高一基 礎生物提及細菌的基本構造及分類, 高二 應用生物進一步介紹細菌的發酵工業與食 品生產,網路上更隨處可見益生菌有益健 康的文章。然而,我們所食用的益生菌是 否真正有發揮它的功效? 國人的飲食大多 數偏重高鹽高鈉的飲食形態,欲研究食物 中的鹽及陽胃道環境是否會影響我們所攝 取的益生菌功能,本實驗自不同種類的蔬 菜發酵液及乳酸發酵乳中,篩選適合之乳 酸菌菌株,進行鏡檢法、格蘭氏染色法及 觸酶測試,篩選出6株植物乳酸菌與6株 動物乳酸菌(10 株為短桿菌,2 株為球菌)。 將 12 株菌株與對照組菌株(L. acidophilus)分別進行耐酸、耐膽鹽及耐鹽 性等測試,以 L. acidophilus 作為篩選之依 據,探討植物性乳酸菌株相較於對照組菌 株及動物性乳酸菌在耐酸性及耐鹽度的表 現。未來可經由馴養與調整培養條件,提 升其耐受性及產乳酸能力,將可應用於食 品加工或其他領域。

*為本文通訊作者

貳、研究設備及器材

- 一、設備
- 1. 複式顯微鏡(MICROTECH BL- 150SY 數位攝影)
- 2. 解 剖 顯 微 鏡 (MICROTECH S-730L-SY)
- 3. 自動 PH 控制儀(酸鹼值度計 SP-701)
- 4. 高速微量離心機(D-78532)
- 5. 恆溫振盪培養箱(YIHDERN DK-600)
- 6. 微量天秤 (Hengx600)
- 7. 數位相機 (Canon S80)
- 8. 筆記型電腦 (AsusGIaKT730D15.4)
- 9. 微量吸取器
- 10. 滅菌釜(SN: B26N-1-07D1-003)
- 11. 厭氧缸(GasPak Plus)
- 12. 分光度計(Jasco V-630)
- 13. 鹽度計(SA28T)
- 14. 糖度計(BR32T)
- 15. 查菌軟體

二、器材

- 1. 錐形瓶(500mL、250mL)
- 2. 檯燈
- 3. 酒精燈
- 4. 接種環

- 5. 滴管
- 6. 玻棒
- 7. 載玻片
- 8. 藥勺
- 9. 蒸餾水
- 10. 培養皿(直徑 9cm)
- 11. 無菌水
- 12. API 50 CH strip
- 13. 厭氧包 (購自啟新生物科技; Lot # 0114LJ-1)
- 14. 火柴
- 15. 試管架
- 16. 燒杯(50mL、100mL)
- 17. 顯微測微器
- 18. 剪刀
- 19. 無菌試管(15mL)
- 20. 鑷子
- 21. 無菌棉棒
- 22. pH Paper
- 23. 無菌滴管
- 24. 50 CHL Medium
- 25. MRS Medium

三、實驗藥品

- 1. 格蘭氏染液(結晶紫、碘液、酒精 95%、 沙番紅)
- 標準菌株(L. acidophilus)(購自 MediMark; Lot#885296)
- 3. 3% H₂O₂
- 4. 無菌礦物油
- 5. 無菌水
- 6. Bile salts 膽鹽(購自 SIGMA; Lot# 079K1441V)

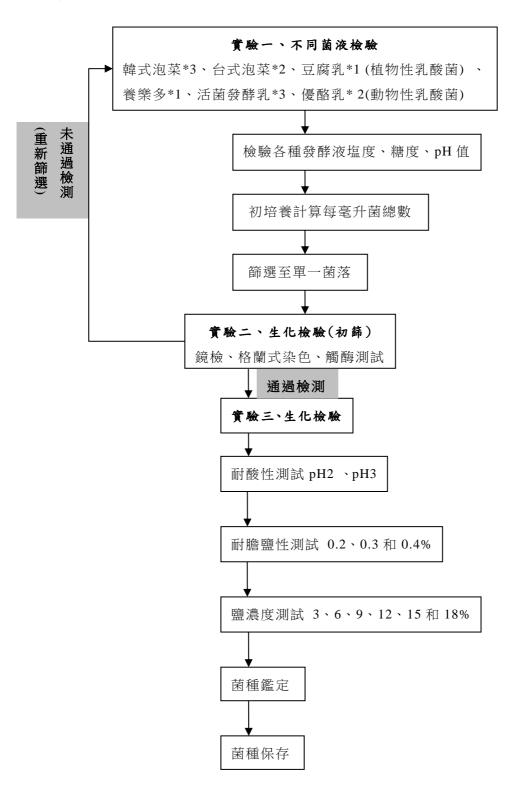
- 7. 濃度 70%酒精
- 8. McFarland No.1、2、3 硫酸鋇標準液

四、培養基(詳細成分列於附錄)

- 1. MRS Agar
- 2. MRS Broth

五、實驗材料

- 1. 6種蔬菜發酵液
 - (1) CHONGA
 - (2) 韓式正宗
 - (3) 韓式袋裝
 - (4) 台式泡菜
 - (5) 自製泡菜
 - (6) 豆腐乳
- 2. 6種乳酸發酵乳
 - (1) AB 優酪乳
 - (2) 原味多多
 - (3) 好運多多
 - (4) 傳統多多
 - (5) 亞當
 - (6) 晶球優酪乳


參、研究過程及方法

實驗流程概念圖,如表1。

實驗一、不同發酵菌液檢驗

- (一) 檢驗各種發酵液塩度、糖度、pH值
 - 1. 鹽度、糖度測定:
 - (1) 將鹽度計、糖度計折射計末端稜 鏡瞄準光亮的方向,旋轉焦距調 整鈕直到標線的字體清晰為止。

表 1、實驗流程概念圖

- (2) 零點調整:打開稜鏡蓋子,滴入 1~2滴純水在稜鏡上,蓋上蓋子 同時輕壓一下(請注意不要有氣 泡),然後用小螺絲起子旋轉零 點調整螺栓,使明暗分界線落在 零點線上。
- (3) 測試:打開稜鏡蓋子,用拭鏡紙 清潔稜鏡表面,滴入 1~2 滴待測 溶液同時蓋上蓋子輕壓一下(不 要有氣泡),讀取明暗的分界線所 在的刻度,即為溶液的濃度。
- (4) 測量完後應以溼紗布清潔稜鏡蓋 子及表面,待乾後再妥善存放。

2. pH 值:

吸取適當量之待測液體滴在 pH paper 上,以比色法比對待測溶液之 pH 值。

(二) 發酵菌液數計數預實驗

將泡菜(植物性乳酸菌)6 種、養樂多 (動物性乳酸菌)原液序列稀釋:

- 將的樣本原液做 4 個倍率稀釋:
 1x, 10x, 100x, 1000x, 以微量吸管各取 10 μ L 塗佈於 MRS
 Agar 培養基上。
- 將培養基倒置放於厭氧缸中,設定 36℃培養 48 小時,每 24 小時觀察紀錄菌落外觀及菌落數。
 (重複此實驗三次求平均值)

(三) 乳酸菌數量之檢測

根據預實驗結果,將蔬菜發酵液(植物 性乳酸菌)6種,稀釋100倍以微量吸 管各取10μL塗佈於MRS Agar 培養基 上;乳酸發酵乳(動物性乳酸菌),稀釋 1000 倍以微量吸管各取 10μL 塗佈於 MRS Agar 培養基上,於 36℃下培養於 厭氧缸中,加入厭氧包一包,培養 48 小時,再進行菌落計數(有效計數範圍 25~250 個菌落數),採三重複,結果以 Log 10 population CFU/mL 表示。

實驗二、生化檢驗(初篩)

(一) 鏡檢 (菌落觀察):

將培養於 MRS Agar 培養基 48 小時的 菌落,在放置解剖顯微鏡下觀察,並 照相留存。

(二) 格蘭氏染色:

【原理】

此染色法是以發明人-丹麥醫生格蘭(Christian Grams)來命名,利用細菌細胞壁的差異進行分類。格蘭氏陽性菌(Grams positive)的細胞壁外有大量的肽聚醣可以捕捉結晶紫(violet)染料,在使用酒精褪色後加入沙番紅仍呈紫色;格蘭氏陰性菌(Grams negative)的肽聚醣位於原生質膜和外膜間,含量較少,使得結晶紫容易在浸潤後失去,而被沙番紅染成紅色。

【試劑】

初染劑:結晶紫染料(violet)

媒染劑:格蘭氏碘液(Grams iodine)

脫色劑:95%酒精 複染劑:沙番紅

【程序】

1. 滴一滴蒸餾水在載玻片上。

- 2. 以接種環取一點菌落劃開於蒸餾 水中,以酒精燈加熱固定。
- 3. 以結晶紫染色一分鐘。
- 4. 以蒸餾水沖掉結晶紫,待乾後滴格 蘭氏碘液於菌落中,使之作用一分 鐘。
- 月 95%酒精沖去格蘭氏碘液約 30
 秒。
- 6. 以沙番紅染色一分鐘。
- 7. 置於顯微鏡下觀察,若細菌外觀為 紫色,則為格蘭氏陽性菌;若細菌 外觀為紅色,則為格蘭氏陽性菌。
- 8. 以標準菌株(大腸桿菌及金黃色葡萄球菌)做格蘭氏染色,作為染色 是否成功的對照。

(三) 觸媒(catalase)測試:

【原理】

大多數的好氧菌(aerobics)和兼性菌 (facultative)在利用氧氣過程中會產 生過氧化氫(H₂O₂),而過氧化氫對細 菌酵素系統有害,因此有些細菌會產 生觸媒以便將過氧化氫轉變成氧氣 與水。藉由觸媒測試,亦可間接讓我 們判別菌種為好氣菌(aerobes)或是厭 氣菌(anaerobes)。

【試劑】

現配的雙氧水(H₂O₂3%)

【程序】

- 1. 以無菌接種環挑起些許待測菌種。
- 2. 將待測之菌種抹於載玻片上。
- 3. 滴 2-3 滴 3%雙氧水於菌種上,觀察其反應。

實驗三、動、植物乳酸菌耐酸、耐膽鹽及耐鹽的比較

(一) 菌液的配製:

以無菌棉棒沾待測菌落上的適量乳酸菌,沿著裝有 10 毫升無菌水的無菌試管壁緣,往下旋轉,使棉棒上的乳酸菌與無菌水混合,持續此步驟直至菌液的顏色與 McFaland No.3 比對相等為止。此時,菌液內的菌量約為 9×10⁸/毫升。

(二) 耐酸性測試:

配製 9 毫升 MRS broth 以 3M HCl 調整不同 pH 值 (pH2、3),以 121℃高溫高壓滅菌 15 分鐘後取出移入無菌操作台,待冷卻後加入 1 毫升菌液(McFaland No.3 比對調整菌數至 9×10⁸/毫升)在 36℃下培養之,3 小時後立即取出,於分光光度計中測O.D.600nm之吸光值。

(三) 耐膽鹽測試:

配製不同膽鹽濃度(0.2、0.3 和 0.4%)的 MRS broth 及不含膽鹽的 MRS broth 各 9毫升,以 121℃高溫高壓滅菌 15分鐘後取出,移入無菌操作台,待冷卻後加入 1毫升含有 9×10⁸/毫升乳酸菌的菌液,於 36℃下培養,並於培養期 0、3、6 和 24 小時取出 1毫升菌液,離心並以去離子水取代 MRS broth 震盪均匀後,再離心(3000rpm,5 分鐘),取上清液,以分光光度計測定其在 O.D.600nm 之吸光值。

(四) 鹽濃度測試:

配製不同 NaCl 濃度(3、6、9、12、15 及 18%)的 MRS broth 及不含 NaCl 的 MRS broth 各 9 毫升,以 121℃高溫高壓滅菌 15 分鐘後取出,移入無菌操作台,待其冷卻後加入 1 毫升含有 9 ×10⁸/毫升乳酸菌的菌液,於 360C 下培養 12 小時,以分光光度計測定其在 O.D.600nm 之吸光值。

(五) 菌種保存:

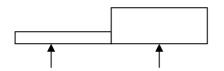
- 將甘油以 121℃高溫高壓滅菌 15 分鐘後取出,移入無菌操作台。
- 2. 將甘油與菌液 1:1 混和於保存瓶 內。
- 3. 以封口膜封起,震盪均匀。
- 4. 置於 -20 ℃ 低溫冷凍冰箱。

(六) 菌株活化:

- 1. 配置液態培養基(含有 MRS 5.5 %) 以 121℃高溫高壓滅菌 15 分鐘後 取出,移入無菌操作台。
- 2. 將菌液震盪均匀,倒入液態培養基內。
- 3. 以封口膜封起,震盪均匀。
- 移入恆溫培養箱(36℃)培養 24 小時。

實驗四、菌種鑑定

(一) 原理及鑑定菌種:


在 API 50 CH strip 的各個試驗孔中, 含有 49 種不同的碳水化合物,可測 知細菌對碳源的利用情形;在接種細 菌之後,細菌在其中生長會造成培養 基的 pH 值的變化,由培養基的顏色 變化來判定細菌的種類。

(二) 選擇菌落:

- 先檢查是否為單純菌株,將其培養在 MRS agar 上,在厭氧的環境下 36℃培養 24 小時。
- 2. 確定屬於 lactic 菌群(為格蘭氏陽性、厭氧、catalase 反應為負、無內孢子的桿菌)。

(三) 操作步驟:

- 1. 將培養盒中加入約 10 毫升的無菌水,使盒中保持濕度,將 API 50 CH strip 放入盒中。
- 2. 操作之前要先將菌活化,最好為培養 18-24 小時之純菌落。
- 3. 調配細菌懸浮液及接種:將培養基上所有菌落挑入2毫升無菌水中混合均匀為濃菌液 S。再將 S 菌液滴入 5 毫升無菌水中,調整濃度至2McFarland No2, 記下所滴入的滴數為 n。接著在 API 50 CHL Medium (10毫升)中滴入 2n滴的 S 菌液,混合均匀使其最後濃度成為McFarland No2。將此菌液加滿 API 50 CHB strip 各個試驗孔的 tube 部分,在各個試驗孔的 cupule 部分覆蓋無菌礦物油。
- 4. 在需氧環境下 36℃培養 48 小時。
- 為防止培養時所產生的氣泡干擾, 可將 strip 的一端稍為墊高,使氣泡 集中在 tube 上半部或下半部。

註: Strip 凹槽分為兩部份 -tube 及 cupule

(四) 判讀:

- 1. 在 24 小時及 48 小時各作一次判 讀。
- 2. 當培養基中所含的 bromocresol purple 因為 pH 值的轉變而由紅色

- 轉成黃色時,即為正反應。第 25 號管的 Esculin 試驗,由紫色轉成 黑色亦為正反應。
- 3. 將結果記錄在 result sheet 上,正 反應塗黑,負反應留白,+/- 或-/+ 則劃 X,再以電腦 APILAB 軟體查詢結果。
- 4. 所使用過的 strip、 ampoule、培養盒及無菌滴管,都需經滅菌之後再丟棄。

肆、研究結果

實驗一、不同菌液檢驗

(一) 不同發酵菌液的鹽度比較

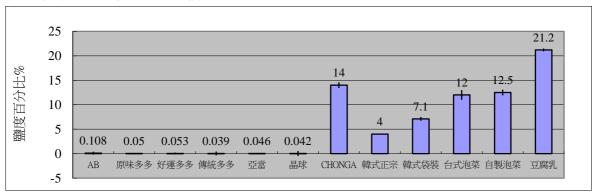


圖 1、不同發酵菌液的鹽度比較

(二) 不同發酵菌液的糖度比較

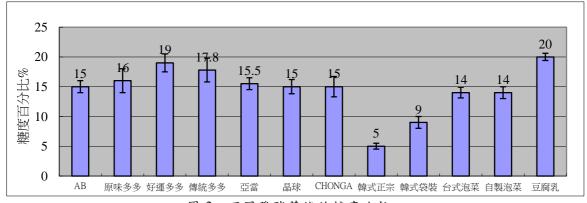


圖 2、不同發酵菌液的糖度比較

(三) 不同發酵菌液的 pH 值比較

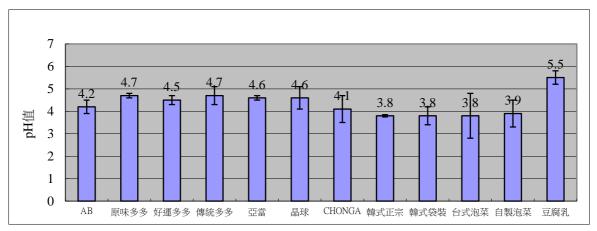


圖 3、不同發酵菌液的 pH 值比較

(四) 不同發酵菌液菌數量比較

表 2、各種蔬菜發酵液及乳酸發酵乳之菌數檢測

	每毫升菌數 (×10 ⁵)	Log 10 CFU / mL		每毫升菌數 (×10 ⁵)	Log 10 CFU / mL
亞當	130	7.11	CHONGA	5.51	5.74
原味多多	1335	8.13	韓式正宗	7.49	5.87
好運多多	1.78	5.25	韓式袋裝	2.3	5.36
傳統多多	1935	8.29	台式泡菜	2.28	5.36
AB	5850	8.77	自製泡菜	1.46	5.16
晶球	85	6.93	豆腐乳	6.89	5.84

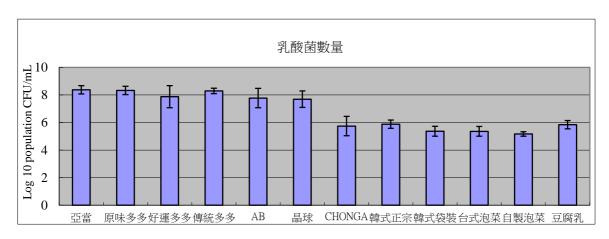


圖 4、不同發酵菌液的菌數量比較

實驗二、生化檢驗(初篩)

在經過鏡檢、格蘭氏染色以及觸媒測試後,我們分別將取自 6 種蔬菜發酵液以及 6 種乳酸發酵乳的菌株編號,結果如表 3、表 4 所示:

表 3、篩選之菌種編號

菌株來源	菌株編號	菌株來源	菌株編號
標準菌株 L. acidophilus	LA	CHONGA	CH-1
AB	AB-1	韓式正宗	KOA-1
原味多多	OR-1	韓式袋裝	KOB-1
好運多多	GL-1	台式泡菜	TAI-1
傳統多多	TR-1	自製泡菜	HO-1
亞當	AD-1	豆腐乳	DO-1
晶球	CR-1		

註:原味多多、傳統多多、AB、晶球:購自於超市。

亞當、好運多多: 為便當店附贈之飲料。

韓式泡菜:CHONGA、韓式正宗、韓式袋裝購自於超市。

台式泡菜:購自於超市。 自製泡菜:購自於傳統市場。

豆腐乳:購自於超市。

表 4、不同菌株之生化檢驗結果

菌株編號	菌落形態	菌株形態	觸媒測試	格蘭氏染色
LA	小白球狀	短桿菌	陰性	G(+)
AB-1	水滴狀	短桿菌	陰性	G(+)
OR-1	水滴狀	短桿菌	陰性	G(+)
GL-1	水滴狀	短桿菌	陰性	G(+)
TR-1	小白球狀	短桿菌	陰性	G(+)
AD-1	小白球狀	短桿菌	陰性	G(+)
CR-1	水滴狀	短桿菌	陰性	G(+)
CH-1	小白球狀	球菌	陰性	G(+)
KOA-1	水滴狀	短桿菌	陰性	G(+)
KOB-1	大白球狀	短桿菌	陰性	G(+)
TAI-1	小白球狀	短桿菌	陰性	G(+)
НО-1	水滴狀	短桿菌	陰性	G(+)
DO-1	大白球狀	球菌	陰性	G(+)

註:本實驗選擇每一種發酵液中數量最多的菌種培養,以及做接下來的耐酸、耐膽鹽及耐鹽度實驗。

實驗三、動、植物乳酸菌耐酸、耐膽鹽及耐鹽的比較

(一) 耐酸性測試

本實驗將菌株(接種菌數為 9×10^8 CFU/mL)分別接種於不同pH值(pH 2、pH 3)的MRS broth培養基中,3小時後以分光光度計測其於OD 600 nm的吸光值(如圖5、表5所示),結果顯示於pH= 3時菌株存活率為編號CH-1為最高(篩選自韓式泡菜)(76.2%),其次為DO-1(篩選豆腐乳)(74.2%)及HO-1(72.1%),對照組菌株存活率為L. acidophilus 62.5%;於pH2時菌株存活率依然以CH-1為最高(64.4%),其次為DO-1(60.7%)及TR-1(54.2%),對照組菌株存活率為L. acidophilus(35.5%)。

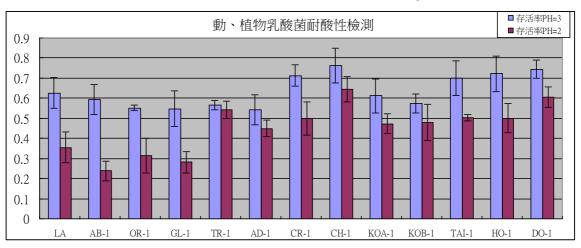


圖 5、動、植物乳酸菌耐酸性檢測

表 5、菌株對於不同 pH 值的培養基之耐受性百分日	長 5、	、 菌株:	對於不同	nH 值	的位卷	其ク	耐妥性	百分比
----------------------------	------	-------	------	------	-----	----	-----	-----

	よみ でも さた 中心	p	OH 值
菌種編號	接種菌數 (CFU/mL)	pH=3	pH=2
	(CFU/IIIL)	存活率	百分比%
LA	9×10 ⁸	62.5	35.5
AB-1	9×10 ⁸	59.4	23.8
OR-1	9×10 ⁸	55.1	31.4
GL-1	9×10 ⁸	54.7	28.2
TR-1	9×10 ⁸	56.4	54.2
AD-1	9×10 ⁸	54.1	44.9
CR-1	9×10 ⁸	71.3	49.9
CH-1	9×10 ⁸	76.2	64.4
KOA-1	9×10 ⁸	61.2	47.3
KOB-1	9×10 ⁸	57.3	48
TAI-1	9×10 ⁸	70.1	50.3
HO-1	9×10 ⁸	72.1	49.9
DO-1	9×10 ⁸	74.4	60.7

註:pH值耐受性百分比(%) = <u>pH=2 或 pH=3 之 MRS broth 的 OD 值</u> 正常之 MRS broth (pH=5.5) 的 OD 值

(二)耐膽鹽性測試

本實驗將所篩選之菌株接種於含有膽鹽(0.2、0.3和0.4%)與不含膽鹽的培養基中,分別於0、3、6、24小時取出1毫升菌液,以分光光度計測得OD600nm 之吸光值,繪製生長曲線,並計算出膽鹽耐受性百分比,如表六所示。結果顯示各菌株在膽鹽濃度逐漸提高時存活率皆有下降的趨勢。在膽鹽濃度為0.3%時,TR-1(篩選自傳統多多)有最高的存活率(73%),其次為AB-1(篩選自AB優酪乳)(55%)及CR-1(篩選自晶球優酪乳)(54%),對照組菌株(L. acidophilus)存活率為36%。而於膽鹽濃度為0.4%時,TR-1仍有較高的存活率(60%),其次為AB-1(50%),對照組菌株(L. acidophilus)存活率為31%。在膽鹽濃度為3%時,除了KOA-1(篩選自韓式泡菜),動物性乳酸菌的對膽鹽的耐受力比植物性乳酸菌強。

表 6、菌株對於不同膽鹽濃度的培養基之耐受性百分比

		膽鹽濃度%		
菌種編號	接種菌數	0.20%	0.30%	0.40%
	(CFU/mL)	膽	音鹽耐受性百分比%	
LA	9×10 ⁸	48	36	31
AB-1	9×10 ⁸	71	55	50
OR-1	9×10 ⁸	60	40	30
GL-1	9×10 ⁸	40	33	30
TR-1	9×10 ⁸	82	73	60
AD-1	9×10 ⁸	42	39	24
CR-1	9×10 ⁸	60	54	44
CH-1	9×10 ⁸	48	30	23
KOA-1	9×10 ⁸	51	40	19
KOB-1	9×10 ⁸	64	29	18
TAI-1	9×10 ⁸	38	24	20
НО-1	9×10 ⁸	35	20	15
DO-1	9×10 ⁸	36	26	21

 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :
 :

(三) 耐鹽性測試

本實驗將篩選的菌株接種於含有 NaCl 的(0、3、6、9、12、15 和 18%)培養基中,培養 12 小時,取出菌液 1毫升,以分光光度計測得 OD 600 nm 之吸光值,比較不同鹽濃度下之生長情形,如圖 6~7 所示,並計算出鹽濃度耐受性百分比,如表 7 所示。結果顯示菌株於鹽濃度為 3 % 時,均無受到顯著的影響,耐受性為 72.4~98.5 %,當鹽濃度為 6 % 時,菌株生長開始受到抑制,隨著鹽濃度增加抑制情形顯著,其中(豆腐乳)DO-1 於鹽濃度為 6 % 時,耐受性可達 97.3%,而各類動物性乳酸菌則生長明顯受到抑制,耐受性為 6.0~33.6 %。對照組菌株(L. acidophilus)隨著鹽濃度增加生長受到抑制,當鹽濃度超過 6 % 時,耐受性為 2.3~4.0%。而在鹽度再度提高至 9%,台式泡菜(TAI-1)及豆腐乳(DO-1)均有不錯的表現,其耐受性分別達 42.7 %及 52.3%。

表 7、菌株對於不同鹽度的培養基之耐受性百分比

	拉毛芒數	鹽度							
菌種編號	接種菌數	3%	6%	9%	12%	15%	18%		
	(CFU/mL)		鹽度耐受性百分比						
LA	9×10 ⁸	92.1	8.2	4.0	2.6	2.5	2.3		
AB-1	9×10 ⁸	72.4	13.1	8.8	8.8	8.1	0.5		
OR-1	9×10 ⁸	91.1	20.1	4.2	4.0	4.0	0.4		
GL-1	9×10 ⁸	92.7	25.0	7.7	6.1	5.3	3.9		
TR-1	9×10 ⁸	91.8	26.6	9.1	8.0	6.2	3.7		
AD-1	9×10 ⁸	89.8	33.6	7.6	6.2	5.4	4.9		
CR-1	9×10 ⁸	79.0	6.0	5.7	5.6	5.4	5.0		
CH-1	9×10 ⁸	97.8	97.3	36.4	23.1	17.1	16.9		
KOA-1	9×10 ⁸	93.4	91.4	35.2	28.3	18.8	12.1		
KOB-1	9×10 ⁸	94.7	86.6	40.6	35.5	19.0	17.0		
TAI-1	9×10 ⁸	97.8	92.9	42.7	34.9	28.1	19.4		
HO-1	9×10 ⁸	96.1	95.5	37.8	31.0	23.5	15.2		
DO-1	9×10 ⁸	98.5	96.6	50.3	38.6	29.4	22.9		

 註:
 鹽度耐受性百分比(%) =
 含鹽之 MRS broth 的 OD 值
 × 100 %

 不含鹽之 MRS broth 的 OD 值
 × 100 %

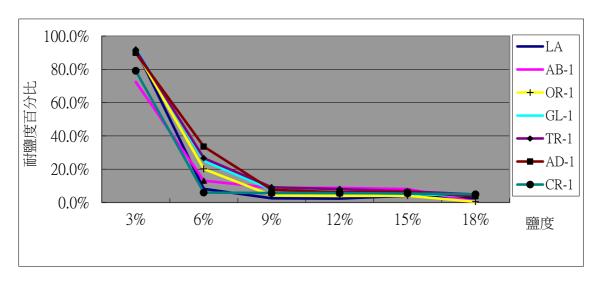


圖 6、六種動物性乳酸菌及標準菌株 L. acidophilus 之耐鹽性測試

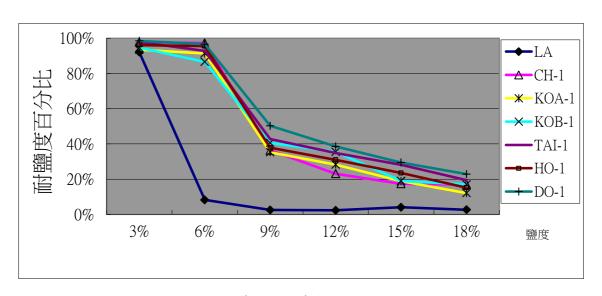


圖 7、六種植物性乳酸菌及標準菌株 L. acidophilus 之耐鹽性測試

實驗四、菌種鑑定

根據 API 菌種鑑定的結果,本實驗自 6 種蔬菜發酵液及 6 種乳酸發酵乳所分離出來的 12 種乳酸菌,共 4 屬 10 種,如表 8 所示:

表	8	`	篩	撰	之	苚	種	編	號	及	苚	種	名	稱
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

菌株來源	菌株編號	菌株名稱	
AB	AB-1	Bifidobacterium lactis 乳雙歧桿菌	
原味多多	OR-1	Lactobacillus reuteri 雷特氏乳酸桿菌	
好運多多	GL-1	Lactobacillus acidophilus 嗜乳酸桿菌,A 菌	
傳統多多	TR-1	Lactobacillus casei Shirota 養樂多代田菌	
亞當	AD-1	Lactobacillus bulgaricus 保加利亞乳酸桿菌	
晶球	CR-1	Bifidobacterium longum 龍根菌	
CHONGA	CH-1	Pediococcus pentosaseus 片球菌屬	
韓式正宗	KOA-1	Lactobacillus plantarum 植物乳酸桿菌	
韓式袋裝	KOB-1	Lactobacillus brevis 短乳桿菌	
台式泡菜	TAI-1	Lactobacillus plantarum 植物乳酸桿菌	
自製泡菜	НО-1	Lactobacillus brevis 短乳桿菌	
豆腐乳	DO-1	Leuconostoc mesenteroides 明串球菌屬	

伍、討論

一、乳酸菌的介紹

乳酸菌為能利用碳水化合物進行發酵產生大量乳酸之細菌的總稱。通常為革蘭氏陽性菌,可利用碳水化合物進行發酵而產生大量乳酸,無運動性且不產孢,缺乏觸酶活性。

依據國內外報告,乳酸菌對人類健 康已經確認之功效有:改善乳糖的吸收、 減少嬰兒或成人的下痢、增強免疫能力與 減少細菌酵素等。但唯有能夠通過胃酸及 膽鹽考驗的乳酸菌才能在腸道內發揮功效, 而國人的飲食習慣又偏向高鹽高鈉飲食, 更加影響乳酸菌在腸胃道生存。

本實驗研究目的,由不同來源的蔬菜 發酵液及乳酸發酵乳中篩選出單一菌株與 對照組菌株(L. acidophilus)進行耐酸、耐膽鹽、耐鹽性等耐受性測試,將對照組菌株的耐受性作為篩選之依據,篩選具高耐受性且能發揮功效之耐鹽乳酸菌。

二、不同發酵菌液檢驗

(一) 檢驗各種發酵液鹽度、糖度、pH值

各種蔬菜發酵液的鹽度明顯比乳酸發酵乳高出許多,約為 37~500 倍,而各式泡菜又以台式泡菜的鹽度為高,約比韓式泡菜高出 4~8%,然而,豆腐乳的發酵液鹽度是所有發酵液中之冠,約為 21.2%;在糖度方面,乳酸發酵乳約在 15~19%,約是韓式泡菜的 2~4 倍,而台式泡菜的甜度與乳酸發酵乳差不多,為 14~15%;在

pH 值的測量方面,乳酸發酵液的 pH 值為 4.2~4.7,比起各式泡菜發酵液略 高出 0.1-0.9。

(二) 乳酸菌數量之檢測

各種乳酸發酵乳的乳酸菌量遠高出 蔬菜發酵液,乳酸發酵乳平均含乳酸 菌量為每毫升 10⁷ 以上,蔬菜發酵液 平均含乳酸菌量為每毫升 105以上; 而韓式泡菜的乳酸菌量略高於台式 泡菜,約為 1.5~3.5 倍。此外,檢驗 市售大廠牌乳酸發酵乳(AB、原味多 多、傳統多多)以及便當店的亞當, 乳酸菌含量皆有符合包裝上的標定 值。但隨便當附贈之一的好運多多菌 數只有每毫升 178000 個乳酸菌,並 不符合產品上所標示之每毫升 1000000。另外,晶球優酪乳測得菌 數的結果只有每毫升 850000, 並不 符合產品上所標示之每毫升 200000000 以上的活性乳酸菌數。推 測其原因,因為晶球優酪乳以晶球微 膠囊包裹 Bifidus 菌,我們所吸取的 乳酸發酵乳中晶球並不是平均分布, 因此只有檢測到部份的晶球以及散 佈於發酵液中的另外兩種乳酸菌: Streptococcus thermophilus (S菌)以 及 Bifidobacterium longum (L菌), 並 且每一個晶球中有多少 Bifidus 幫可 能無法檢測,如此的原因造成實驗上 的誤差值,未來可以設計專門檢測品 球內乳酸菌的菌數再做進一步的確 認。

三、不同菌株之生化檢驗結果比較

本實驗利用 MRS broth (含 1%乳糖) 從 6 種蔬菜發酵液及 6 種乳酸發酵乳中各 篩選 6 種植物性乳酸菌及動物性乳酸菌, 經過鏡檢、格蘭氏染色及觸媒測試,實驗 結果顯示,6 種動物性乳酸菌皆為桿菌,4 種植物性乳酸菌為短桿菌,2 種為球菌, 所篩選純化的 12 株菌株皆為格蘭氏陽性 菌,觸酶反應皆為陰性,初步鑑定為乳酸 菌。

四、動、植物乳酸菌耐酸、耐膽鹽 及耐鹽的比較

食物從嘴巴進入食道-胃-小腸-大腸-結腸-肛門-排出體外需要20~24小時以上的時間。食物在胃內停留時間:醣類最短(2~3小時),脂肪最長(可達6小時);食物在小腸內停留3~8小時。本實驗設計模擬胃內的環境(pH=2)以及腸道的環境(膽鹽濃度 = 0.3%)以及在胃內食物停留的時間(3小時)以及在人體內停留的時間(24小時),測試動植物乳酸菌在耐酸耐膽鹽及耐鹽度上的比較。

乳酸菌本身雖為產酸菌,但其生長環境的pH值僅能下降至3.2~4.5,因此極低pH之胃酸 (pH 2.0~3.2),為影響其存活之主要因素。文獻中指出部分乳酸菌於pH 2.5時,僅可存活2小時,大部分的乳酸菌於pH 3 的培養基中,存活率可以顯著的提高。針對耐酸性進行來源性的比較上,發現植物性乳酸菌對於酸的耐受性較好,而動物性乳酸菌對於酸的耐受性較好,而動物性乳酸菌對於酸的耐受性較差,無法忍受

pH 2.0環境的處理。推測其可能原因為醃 漬或發酵蔬菜的汁液pH值約在3.8-4.0 之 間,分離自其中的乳酸菌可能因低酸度生 長環境的自然篩選或刺激而發展出高度耐 酸特性。

腸內的膽鹽對微生物亦是一種抑制 因子, 膽鹽由肝臟產生, 為一種界面活性 劑。人類陽胃道中的膽鹽濃度並不相同, 大部分的研究均以0.3%的膽鹽濃度來模 擬人類的膽鹽(Lin et al., 2006; Liong and Shah, 2005)。針對膽鹽耐受性進行來源性 的比較上,動物性乳酸菌對於膽鹽的耐受 性較好。根據Tanaka (1999)研究指出膽鹽 的耐受性與膽鹽水解酶分佈有關,大部分 具有膽鹽水解酶活性的菌株多是分離自哺 乳動物腸道或排泄物的菌株,且該菌株存 在豐富膽鹽水解酶活性。而分離自缺乏膽 鹽環境的棲息地如發酵蔬菜的菌株,則較 不容易具有膽鹽水解酶活性。推測本實驗 篩選之動物性乳酸菌為菌株也是因膽鹽水 解酶活性的差異,而對於膽鹽耐受性會比 植物性來源的菌株較好。動物小腸中的膽 鹽濃度是影響乳酸菌存活的重要因素之一, 而乳酸菌的存活與否是乳酸菌發揮益生性 功效的關鍵。

一般分解蛋白質與脂肪的微生物,當鹽濃度大於2.5%即無法生長,發酵液中酸與鹽類同時存在時,此類微生物對鹽類的耐受性更差,而乳酸菌對鹽類濃度的耐受性可高達10~18%,因此對分解蛋白質與脂肪的微生物所引起的腐敗作用,具相當強的抑制作用。在耐鹽度的測試方面,植物

性乳酸菌對鹽度的耐受性高於動物性乳酸菌,在鹽度為9%時動物性乳酸菌的耐受性約為2%~9%,而植物性乳酸菌的耐受性約為35%~50%。推測其原因,在醃漬蔬菜的醬汁中因含有高濃度的鹽分,乳酸菌長期適應的結果發展出能夠適應高鹽度環境的特性,因而能夠在高鹽度的環境下生存。

陸、結論與應用

一、乳酸發酵乳及蔬菜發酵液的比 較

	乳酸發酵乳	蔬菜發酵液
鹽度	0.04 ~ 0.1 %	4 ~ 21.2 %
糖度	15 ~ 19%	5~14 %(泡菜) 20%(豆腐乳)
pH值	4.2 ~ 4.7	3.8~4.1(泡菜) 5.5(豆腐乳)
乳酸菌 數量	約 10 ⁵ ~ 10 ⁸	約 10 ⁵
量禁	約每100毫升 60 大卡	約每100g30大卡 (泡菜) 約每100g97大卡 (豆腐乳)

乳酸發酵乳是良好的乳酸菌及鈣質來源,但熱量偏高,飲用過多反而會造成人體負擔,約一日喝 400 毫升為適量。而泡菜雖然熱量較低且有纖維素,但鈉含量偏高,有心血管疾病的人不食用過多,宜選擇鹽度及糖度較低的韓式泡菜較有益健康。

二、動植物乳酸菌的比較

	動物性 乳酸菌	植物性 乳酸菌
來源食物	乳類、優酪 乳、起司、 優格	泡菜、豆腐乳、 醬油、味噌
糖類來源	乳糖	葡萄糖、果糖、 蔗糖、麥芽糖
耐酸度 (pH=2)	較差	較佳
耐膽鹽(0.3%)	較佳	較差
耐鹽度	較差	較佳
抑菌物質	無	單寧酸、 生物鹼等
共生微生物	無	厭氧菌、酵母菌

由於動物性乳酸菌對胃酸以及鹽度 的耐受性較低,因此建議不要空腹飲用, 搭配清淡的餐點,可配合早餐及下午點心 飲用,並且避免與鹽度高的食物如麻辣火 鍋及燒烤等一起食用,以提高其保健功效。

泡菜有益健康,但鹽度相對較高,可 在用正餐時當配菜。由於它的耐高鹽特性, 也可做成泡菜火鍋,在吃大魚大肉同時增 加乳酸菌及纖維素的攝取,如此吃的更健 康。

三、增加保健功效的乳酸菌

動物性乳酸菌中且以養樂多分離出來之 Lactobacillus casei Shirota 最具抗胃酸以及膽鹽的能力。從韓式泡菜 CHONGA

分離出來的 Pediococcus pentosaseus 的在 抗酸性,耐膽鹽及耐鹽方面皆有不錯的表 現,未來可以此菌株作為蔬果汁或醃漬品 中之乳酸菌添加物以增加其保健功效。

四、乳酸菌產品的發展趨勢

根據 ITIS 產業評析的報導指出, 2005 年「日本特定保健食品用途別」之整 體市場值為 5,299.2 億日圓,而乳酸菌相 關產品卻達到3,516.9 億日圓,約為66%。 我國近年之發酵乳年產值均超過 40 億元; 在日本和歐洲的市場中,乳酸菌發酵乳品 占乳製品市場的比例已達到80%, 北美約 30%,乳酸菌產業在全球已超過其他乳製 品的增長率(陳慶源等,2007)。由此可 知,乳酸菌在健康食品的發展上具有不可 或缺的地位。由近年來乳酸菌的研究、科 技的不斷更新與發展以及消費者的需求來 看,未來乳酸菌產品研究發展的趨勢可從 (1)對抗胃酸、膽鹽的特異性菌株,針對 不同陽胃消化道區域,或者特別對某些疾 病有功效的菌株進行篩選,如對抗胃潰瘍、 輪狀病毒痢疾及胃炎等疾病。(2)目前乳 酸菌菌株多數使用於乳品,未來嬰兒配方、 幼兒食品、發酵果汁、發酵豆製品、穀類 食品、酶漬品以及特定醫療食品等,將是 添加乳酸菌的新機能食品。

參考文獻

王進琦,2000年。微生物學實驗。藝軒圖書出版社。臺北市。P. 26-30,103-105,145-150,196-199。 陳慶源、黃崇真、邱雪惠、廖啟成,2007。

- 乳酸菌之保健功效與產品開發。農業生技產業季刊。 第十一期。
- 潘子明,2005。我國乳酸菌最近的研究趨勢暨通過健康食品認證之乳酸菌產品現況。農業生技產業季刊。第三期。
- Lin, W. H., C. F. Hwang, L. W. Chen, and H. Y. Tsen. 2006. Viable counts, characteristic evaluation for commercial lactic acid bacteria products. Food Microbiol. 23:74-81.
- Liong, M. T., and N. P. Shah. 2005. Acid and bile tolerance and cholesterol removal ability of Lactobacilli strains. J. Dairy Sci. 88:55-66.
- Tanaka, H., K. Doesburg, T. Iwasaki, and I. Mierau. 1999. Screening of lactic acid bacteria for bile salt hydrolase activity. J. Dairy Sci. 82:2530-2535.