Studies on Taiwanese Aquatic Fungi II. *Allomyces arbuscula* and *Allomyces moniliformis*

Chiu-Yuan Chien**

Abstract

Allomyces arbuscula and *Allomyces moniliformis* are identified and illustrated. The former species representing Eu-*Allomyces* type and the latter species representing Cystogenes type of their life cycles are examined. Both species were found only from paddy soils in Tau-Yuan, and listed here are new to Taiwan.

INTRODUCTION

Recently, we are successful to isolate two species of *Allomyces*, i.e., *Allomyces arbuscula* and *Allomyces moniliformis* by the use of hempseeds technique. This report will be continued to deal with their description and occurrence to the last paper (Chien, 1974).

DESCRIPTION

* Financial support of National Science Council, in Taipei is gratefully acknowledged. The actual survey was from June 1, 1973 to May 31, 1974.

** Mycology Laboratory, Institute of Biological Sciences, National Taiwan Normal University, Taipei, Taiwan, R.O.C.

Allomyces arbuscula var. arbuscula Emerson, Lloydia 4: 136, 1941.

Allomyces arbuscula var. minor Emerson, Lloydia 4: 136, 1941.

Vegetative structures resembling A. macrogynus, dichotomously branched; zoosporangia single or catenulate, broadly subglobose or ovoid, with rounded apex ends, 22-30 X 35-60 μm, forming 1-3 discharge papillae; zoospores ovoid, 6-9 μm, gametangia particularly on young hyphae, regular in shape and arrangement, the primary and often the secondary ones very regularly paired with the female always terminal; female gametangia strikingly larger than the male, often nearly subglobose, colorless, 38-49 μm in diam.; male gametangia barrel shaped, 18-35 μm in diam., with orange-red contents; female gametes colorless, ovoid, 10-12 μm; male gametes ovoid or nearly spherical, 6-8 μm in diam.; resting sporangia abundant, ovoid, with rounded apex and truncate base, 41-60 X 34-43 μm, thick-walled, brown, minute punctate; planozygote biflagellate, germinating after encyst a moment, finally becoming sporophyte.

Habitat: — in paddy soil

Distribution: — India, U.S.A., Philippines, Bali, Mexico, South America, Europe, Africa, Ceylon, Burma, Japan, China and Taiwan

Remarks: — 1) Allomyces arbuscula is distinguished mostly readily by having gametangia when first formed in pairs, with the female usually terminal position.

2) This fungus most closely resembles to Allomyces macrogynus with a life cycle of Eu-Allomyces type.

Vegetative structures dichotomously branched and anchored by rhizoids to substratum, the hyphae with pseudoseptate, 18-42 μm in diam; primary zoosporangia cylindrical, 26-38 X 58-121 μm, with an apical papilla, secondary sporangia form beneath the primary one, forming long, usually much chains, with the younger ones becoming ovoid to more nearly spherical with truncate ends, at first content slightly pink, later becoming browner as the zoospores approach maturity; zoospores ovoid, 10-15 X 8-9 μm, with a long posterior flagellum, monoplanetic, when swimming, amoeboid before encysting; resting spores (resistant sporangia or Chlamydocysts) with conspicuous pits, ovoid, with truncate base and pronounced apical beak, cystoplasam often pigmented, usually 34-42 X 66-78 μm, escaping from the thin clasping hyphal membrane; resistant sporangial zoospores discharge after a rest, exospore thick-walled, dark orange-brown with widely spaced pits, germination of the Cystogenes type, mostly bearing two posterior flagella, 9-12 μm in diam, quickly encysting, secondary resistant sporangial zoospores (the cyst flagellate gametes) 8-10 μm in diam, which fuse in pairs, the resultant zygote producing upon germination the sporophyte plant.

Habitat: - in paddy soil
Specimen: - No. 360, collected from Pref. Tau-Yuan: Nei Ri (內壢) (April 5, 1975 by C. Y. Chien)
Distribution: - U.S.A., Mexico, Cuba, Puerto Rico?, Trinidad, Bolivia and Taiwan
Remarks: - 1) The characteristics of Allomyces moniliformis conform most closely to A. moniliformis Indoh with Cystogenes type, a life cycle differing from Eu-Allomyces.
2) A. moniliformis is distinguished mostly readily by having a truncate base and pronounced apical beak of its resting spores, i.e., resistant sporangia.

ACKNOWLEDGEMENTS
I am indebted to Dr. Hiroharu Indoh, Prof. emeritus of the Tokyo Kyoiku University for his valuable suggestions and revision of the manuscript.
Figs. 1-5.

Figs. 1-5. *Allomyces arbuscula* Butler (all X 400)

1. A young zoosporangium with two papillae.
2. Asexual mycelia with chlamydocysts (resistant sporangia).
3. A chlamydocyst with wall split of membrane.
4. Sexual mycelia with gametangia showing developed in pairs, the female terminal and the male usually subterminal.
5. Sexual mycelium with four gametangia in chain, and developing in pairs.
Figs. 6-11. *Allomyces moniliformis* Coker et Braxton (all X 400)

6-7. The asexual mycelia with chained zoosporangia, showing the emp1 zoosporangia and discharging pores.

8. Asexual mycelia with two terminal chlamydocysts and a intercalary zoosporangium with a papilla.

9. Hyphal membrane inclosing a chlamydocyst.

10. Zoospores emerging from a zoosporangium.

11. A resistant sporangial zoospore and the emergence of 3 quartet of secondary sporangial zoospores.
LITERATURE CITED

中文摘要

兩種厚膜囊水生菌(Allomyces arbuscula and A. moniliformis)已被鑑定和例證。其生活史分別認定前者為真厚膜囊水生菌型(Eu-Allomyces type)而後者為休眠孢子型(Cystogenes type)。兩者均為臺灣黴菌之新記錄種，係由桃園稻田乾土壤中所被發現的。