The case for \(k \geq 4 \)

By using the Method of Infinite Decent, we can prove Theorem 2.1.

Theorem 2.1 The Diophantine equation \(x^2 + y^2 + z^2 = kxyz \) has no positive integer solution, where \(k \geq 4 \), \(k \in \mathbb{N} \).

Proof. First, we claim that the entries of the solution \((a, b, c)\) are all distinct. We suppose that \(a = b \), then \(2a^2 + c^2 = ka^2c \). Hence \(a \mid c \). Let \(c = na, \ n \in \mathbb{N} \), we can get \(2 + n^2 = nka \). This implies \(n \mid 2 \), thus \(n = 1 \) or \(2 \), contradicting to the equation.

Next, let \((a, b, c)\) be a solution. It is easy to see that \(c \) and \(c' = kab - c \) are actually the roots of the quadratic equation \(z^2 - kabz + a^2 + b^2 = 0 \) in \(z \). It follows that \(cc' = a^2 + b^2 \). In particular, \(c' > 0 \). Thus, \((a, b, kab - c)\) is indeed a solution.

We consider that

\[
(e - b)(e' - b) = cc' - (c + c')b + b^2 = a^2 + b^2 - kab^2 + b^2 = a^2 + 2b^2 - kab^2 < 3b^2 - kab^2 = b^2(3 - ka) < 0
\]

By the Method of Infinite Descent, we complete the proof of Theorem 2.1. \(\square \)