Synthesis and Characterization of Self-assembly, Surface-Modified, and Platinum Catalyst Supported Mesoporous Carbons and Their Application as Electrode Catalysts for DMFC/PEMFC Cathode
謝誌

時間過的很快，一轉眼兩年的碩士研究生生活已劃下句點，在此藉此小方塊，表達我衷心的感謝。

首先我要感謝指導教授劉尚斌老師，謝謝劉老師這兩年來給與我許多思考空間，並且提供我許多建議。感謝口試委員:牟中原老師與陳琨銘老師對於我論文上提供許多指導與建議。

感謝實驗室博士後研究的劉守恆學長，感謝他在實驗過程中不辭辛勞的指導並且提供專業知識上的意見，不厭其煩指出我研究中的缺失，使我能夠順利的完成實驗與論文。

再來要感謝實驗室夥伴：安亞、培豪、旻聰、偉源、佳樺、芷宜、自中、惠璇、佳婷，謝謝他們不僅僅在實驗過程中熱心幫忙，也增添實驗室許多點點滴滴的歡笑。

最後，特別感謝我的家人，謹以此論文獻給他們，謝謝他們一路上的支持與鼓勵，讓我能順利完成碩士學業。
中文摘要

由於目前全球正面臨石化燃料短缺，油價持續高漲；能源短缺的危機迫在眉睫以及日趨嚴重之大氣環境污染等問題，因而相關綠色能源議題也逐漸被訴求且受到重視，其中，風力、潮汐能、太陽能、氫能源、燃料電池等相關研究與發展，近年來都是世界各國積極尋求替代性能源創新開發之重點方針。本研究主要目的，在於研發新穎之奈米結構孔洞碳材與負載鈀（Pt）等貴重金屬之一步合成奈米中孔洞碳材（Pt-SCMs），並應用於燃料儲存與燃料電池等能源相關領域。

在材料方面，本研究主要利用奈米結構之孔洞性碳材的高比表
面積、高結構、水熱及機械穩定性，以及獨特的吸附、電化學及催化等特性作為燃料電池材料，例如：燃料儲存吸附載體或燃料電池電極觸媒撥體。但由於目前許多奈米中孔結構碳材都是利用中孔矽模板（例如：SBA-15）填入碳源經高溫石墨化後，再使用氫氟酸（HF）將模板移除，合成複製而來，其中除需使用高成本之矽烷（silanes）材料外，複製合成中孔碳材的步驟亦十分繁瑣，因而大幅降低其實際應用之可能性。因此，吾人提出利用低成本之有機化合物一步合成直接製備奈米中孔洞碳材的策略，期能節省合成之時間與成本，更符合商業化應用趨勢。

吾人首先利用介面活性劑做為軟模版，有機化合物當做碳
源，應用有機-有機自組裝（organic-organic self-assembly）方式合成，再使用不同溫度（350°C、550°C、850°C）石墨化，獲得奈米中孔洞碳材(SCMs)，隨後，再以有機矽烷類3-[2-(2-Aminoethylamino)ethyl amino]propyltrimethoxysilane (C\textsubscript{16}H\textsubscript{27}N\textsubscript{3}O\textsubscript{3}Si) 進行表面胺基官能化修飾，並透過各種光譜及分析實驗技術，鑑定並探討其物化特性。吾人在於SCMs碳材上負載貴重金屬鉑(Pt)，再利用化學方法將金屬鉑還原，最後合成出負載鉑金屬之中孔洞碳材(Pt-SCMs)。隨後，再利用Pt-SCMs複合材料作為燃料電池陰極觸媒，以循環伏特(CV)法測量其電化學特性，並探討比較其對氧氣還原反應(oxygen reduction reaction; ORR)之催化效能。

本研究所獲得之結果，不僅可望增進吾人對一步合成製備奈米中孔洞碳材SCMs及負載金屬的方法與物化特性及其在質子交換膜燃料電池(PEMFC)或直接甲醇燃料電池(DMFC)之電極觸媒應用之瞭解外，並期望能提昇其在燃料電池陰極之氧氣還原催化效能，進而降低觸媒與碳材之製備成本，增加商業化的競爭力。故本研究兼具學術研究及工業應用之重要性。
Abstract

Facing the global crisis in shortage of fossil fuels and increasing environmental pollutions mainly from combustions of carbon-based fuels and abused emission of greenhouse gases, renewable energy-related R&D have becoming a demanding and challenging tasks. Among them, hydrogen fuel cells have received much attention and being considered as the ideal eco-friendly electrical energy conversion devices. The objectives of this research are to develop novel one-step synthesis route to fabricate nanostructured porous carbon materials and to utilize them as supports for noble metal (Pt) catalyst aiming at their practical applications in energy-related issues, such as hydrogen fuel storage and fuel cells.

Owing to the high surface area, structural, thermal/hydrothermal, and mechanical stabilities, and adsorptive, electrical, and catalytic properties, carbon mesoporous materials (CMMs) represent ideal electrodecatalyst supports for fuel cells and adsorption carriers for fuel storage devices. However, in view of the sophisticated procedures invoked for fabrication of CMMs, which were mostly synthesized by replication method using ordered mesoporous silica’s as templates, infiltrated by appropriate carbon precursors followed by thermal polymerization, carbonization, and subsequent removal of the silica framework with acid or base solution. Such a complex synthesis procedure not only is cost ineffective but also limits practical commercial applications of CMMs.

A facile method to fabricate CMMs is by crosslinking phenolic resins in the presence of a self-assembled block-copolymer surfactant template, followed by pyrolysis of the organic precursors (carbon source) and carbonization to obtain the self-assembled carbon materials (SCMs). The SCMs so fabricated were found to possess high surface area, good electrical conductivity, and abundant hydroxyl groups on the pore-wall surfaces, which facilitates surface functionalization and dispersion of metal catalysts in a controllable fashion.

In this work, SCMs were first synthesized by organic-organic self-assembly at different carbonization temperatures (350-850 °C), then, subjected to surface modification by organic silane reagent, 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane (TA), or by chemical treatments (H2O2 and H2SO4/HNO3). Subsequently,
carbon-supported Pt catalysts (Pt-SCMs) were prepared via chemical reduction of H$_2$PtCl$_6$ by NaBH$_4$ at room temperature. Related samples were characterized by a variety of different analytical and spectroscopic techniques. Furthermore, using the surface-functionalized Pt-SCMs as cathode electrodecatalyst, their electrocataytic activities during oxygen reduction reaction (ORR) were evaluated by cyclic voltammetry (CV) and compared to Pt-SCMs prepared by one-pot synthesis.

The results obtained from this research should enhance not only our knowledge on direct fabrication and physicochemical properties of SCMs but also their practical applications as cathode electrocatalysts for proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC). Thus, the outcomes of this research should have some importance in academic as well as industrial R&D and applications.
目錄

中文摘要 ... I
Abstract ... III
目錄 .. III
圖目錄 .. VII
表目錄 ... XII

第一章 緒論 .. 1
 1.1 孔洞性材料之發展與應用 ... 1
 1.2 奈米結構孔洞氧化矽材料 ... 4
 1.2.1 SBA-15 簡介 ... 5
 1.2.2 SBA-15 之合成與機制 ... 6
 1.3 孔洞性碳材之簡介 .. 7
 1.3.1 孔洞碳材合成方法 ... 10
 1.3.2 奈米晶格奈米孔洞碳材簡介 .. 11
 1.3.3 奈米晶格奈米孔洞碳材之合成方法 .. 12
 1.3.4 孔洞性碳材之修飾與應用 ... 19
 1.3.5 負載金屬孔洞性碳材 ... 20
 1.4 負載金屬孔洞性碳材在燃料電池之應用 .. 22
 1.4.1 燃料電池 ... 22
 1.4.1.1 燃料電池種類 ... 24
 1.4.1.2 DMFC 的原理與結構： ... 28
 1.4.2 DMFC 電極所面臨的問題 ... 30
 1.5 研究動機 .. 32

第二章 實驗方法與步驟 ... 35
 2.1 化學藥品與試劑 ... 35
 2.2 實驗流程與樣品製備 .. 36
 2.2.1 奈米晶格奈米孔洞碳材之合成步驟 .. 36
 2.2.2 奈米晶格奈米孔洞碳材之表面胺基官能化修飾 40
 2.2.3 奈米晶格奈米孔洞碳材之表面酸化修飾 41
 2.2.4 以化學還原法負載金屬鉑 ... 44
 2.2.5 一步自組裝合成負載金屬鉑之中孔碳材 45
 2.3 様品特性鑑定 ... 48
 2.3.1 傅立葉紅外吸收光譜儀（FT-IR） .. 49
 2.3.2 汰氣等溫吸附/脫附（N₂ Adsorption/desorption Isotherm） ... 49
 2.3.3 粉末 X 光繞射（Powdered X-Ray Diffraction；PXRD） 51
 2.3.4 透射式電子顯微鏡（Transmission Electron Microscopy；TEM）
第三章 結果與討論 ... 58

3.1 自組織合成中孔碳材之鑑定 ... 58
 3.1.1 具不規則性結構中孔碳材(SCMI)之合成與鑑定 .. 59
 3.1.2 不規則孔洞碳材官能化修飾之合成與鑑定 ... 63
 3.1.2.1 酸處理修飾 .. 63
 3.1.2.2 硅烷類官能基修飾 .. 66
 3.1.3 不規則孔洞碳材負載金屬之合成與鑑定 .. 70
 3.1.4 自組織合成不規則孔洞碳材負載金屬之氧化還原反應 78
 3.1.4.1 不規則孔洞碳材負載金屬之氧化還原反應效能 .. 78
 3.1.4.2 不規則孔洞碳材負載金屬在不同轉速下之氧化還原反應 81

3.2 規則孔洞合成不規則奈米結構碳材之合成與鑑定 ... 94
 3.2.1 規則孔洞碳材之合成與鑑定 .. 94
 3.2.2 規則孔洞碳材官能化修飾之合成與鑑定 .. 101
 3.2.2.1 酸處理修飾 .. 101
 3.2.2.2 硅烷類官能基修飾 ... 103
 3.2.3 規則孔洞碳材負載金屬之合成與鑑定 .. 105
 3.2.4 規則孔洞碳材負載金屬之氧化還原反應 .. 114
 3.2.4.1 不規則孔洞碳材負載金屬之氧化還原反應 ... 114
 3.2.4.2 不規則孔洞碳材負載金屬在不同轉速下之氧化還原反應 117

3.3 一步自組織合成負載金屬之奈米中孔碳材 ... 130
 3.3.1 不規則奈米中孔碳材 .. 130
 3.3.2 規則奈米中孔洞碳材 .. 135
 3.3.3 規則孔洞碳材負載金屬之氧化還原反應 .. 140

3.4 綜合比較 ... 142

第四章 結論 ... 144

參考文獻 ... 146
圖目錄

圖 1-1 中孔洞分子篩 MCM-41 之合成示意圖 3
圖 1-2 (a) MCM-41、(b) MCM-48、(c) MCM-50 之結構示意圖 3
圖 1-3 六角形堆積之中孔洞結構材料示意圖 3
圖 1-4 SBA-15 之合成示意圖 (a) 介面活性劑、(b) 微胞、(c) 六角結構 7
圖 1-5 由 MCM-48 複製 CMK-1 示意圖 3,36 8
圖 1-6 (a) CMK-3 合成示意圖；(b) XRD 與 TEM 圖 3,37,40 9
圖 1-7 由 SBA-15 為模板複製出的 (a) CMK-3 及 (b) CMK-5 示意圖 37,38 9
結構和 CMK-5 類似，但具有中空管狀的特殊結構 37 9
圖 1-8 利用 PS-P4VP 製成孔洞碳材薄膜過程 47 14
圖 1-9 利用 PS-P4VP 製成孔洞碳材薄膜 TEM 圖 47 14
圖 1-10 有機樹脂聚合物合成中孔洞碳材示意圖 46 17
圖 1-11 有機樹脂與有機碳源前驅物利用氫鍵鍵結示意圖 54 17
圖 1-12 揮發誘導自組裝（EISA）方式之示意圖 55 18
圖 1-13 EISA 合成之薄膜結構示意圖 57 18
圖 1-14 中孔洞碳材修飾官能基示意圖 68 20
圖 1-15 合成含貴重金屬鈀觸媒中孔洞碳材 Pt/CMM 之示意圖 76 21
圖 1-16 合成含金屬 Co 觸媒中孔洞碳材 Co/CMM 之示意圖 78 22
圖 1-17 燃料電池示意圖。 24
圖 1-18 Nafion® 結構示意圖 102 28
圖 1-19 燃料電池可用電位及陰陽兩極損失電位示意圖 103 29
圖 1-20 甲醇燃料電池結構示意圖 104 30

圖 2-1 具不規則性結構中孔洞碳材 (SCM1) 之合成步驟。 37
圖 2-2 具規則性結構中孔洞碳材 (SCM2) 之合成步驟。 39
圖 2-3 自組裝合成中孔洞碳材表面胺基官能化修飾流程圖。 40
圖 2-4 自組裝合成中孔洞碳材以硫酸/硝酸進行酸化修飾流程圖。 42
圖 2-5 自組裝合成中孔洞碳材以 H2O2 進行酸化修飾流程圖。 43
圖 2-6 以化學還原法負載金屬 Pt 在修飾前後之中孔洞碳材流程圖。 44
圖 2-7 一步自組裝合成具不規則性結構負載金屬鉑之中孔碳材流程圖。 46
圖 2-8 一步自組裝合成具規則性結構負載金屬鉑之中孔碳材之流程圖。 47
圖 2-9 XRD 利用 Bragg’s Law 示意圖。 52
圖 2-10 穿透式電子顯微鏡剖面圖。 53
圖 2-11 元素分析儀示意圖。 56

圖 3-1 不同石墨化溫度下製備的 SCM1 系列中孔碳材。 60
圖 3-2 不同石墨化溫度下製備的 SCM1 系列中孔碳材之 TGA 圖示。 60
圖 3-3 不同石墨化溫度下製備的 SCM1 系列中孔碳材之氮氣等（77 K）吸附/脱附曲線圖。 ... 61
圖 3-4 不同石墨化溫度下製備的 SCM1 系列中孔碳材之 BJH 孔徑分佈圖。 61
圖 3-5 SCM1s 碳材樣品之 FT-IR 圖譜。 .. 62
圖 3-6 SCM1 系列中孔碳材經不同酸化表面修飾之示意圖。 64
圖 3-7 經不同酸化表面修飾的 SCM1 系列中孔碳材之 FT-IR 圖譜。 65
圖 3-8 經不同酸化表面修飾的 SCM1 系列中孔碳材之親水性對照圖（a~c 為未修飾；d~f 為 H2O2 修飾後；g~i 為 H2SO4 修飾後）。 66
圖 3-9 SCM1 系列中孔碳材經表面胺基官能化修飾前後之示意圖。 67
圖 3-10 表面胺基官能化修飾 SCM1 系列中孔碳材之氫氟等溫(77 K) 吸附/脫附曲線圖。 ... 68
圖 3-11 表面胺基官能化修飾 SCM1 系列中孔碳材之 BJH 孔徑分佈圖。 68
圖 3-12 SCM1s 碳材樣品利用礦烷類官能化修飾之 FT-IR 圖譜。 69
圖 3-13 表面胺基官能化修飾 SCM1 系列中孔碳材之親水性對照圖（a~c 為未修飾；d~f 為修飾後）。 ... 70
圖 3-14 Pt-SCM1s-TA 碳材樣品之高角度 XRD 圖譜。 72
圖 3-15 Pt-SCM1s-H2O2 碳材樣品之高角度 XRD 圖譜。 72
圖 3-16 Pt-SCM1s-H2SO4 碳材樣品之高角度 XRD 圖譜。 72
圖 3-17 Pt-SCM1s 碳材樣品之 TEM 圖。 ... 74
圖 3-18 Pt-SCM1s-TA 碳材樣品之 TEM 圖。 ... 75
圖 3-19 Pt-SCM1s-H2SO4 碳材樣品之 TEM 圖。 76
圖 3-20 Pt-SCM1s-H2O2 碳材樣品之 TEM 圖。 .. 77
圖 3-21 Pt-SCM1s-350 碳材樣品之循環伏安(CV)圖 80
圖 3-22 Pt-SCM1s-550 碳材樣品之循環伏安(CV)圖 80
圖 3-23 Pt-SCM1s-850 碳材樣品之循環伏安(CV)圖 81
圖 3-24 Pt-SCM1-350 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對 ω-1/2 關係圖；ω 為旋轉角頻率。 .. 82
圖 3-25 Pt-SCM1-550 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對 ω-1/2 關係圖；ω 為旋轉角頻率。 .. 83
圖 3-26 Pt-SCM1-850 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對 ω-1/2 關係圖；ω 為旋轉角頻率。 .. 84
圖 3-27 Pt-SCM1-350-TA 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對 ω-1/2 關係圖；ω 為旋轉角頻率。 .. 85
圖 3-28 Pt-SCM1-550-TA 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 86
圖3-29 Pt-SCM1-850-TA碳材樣品之(a)不同轉速下之CV圖，(b)電流密度(j)
對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 87
圖3-30 Pt-SCM1-350-H2O2碳材樣品之(a)不同轉速下之CV圖，(b)電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 88
圖3-31 Pt-SCM1-550-H2O2碳材樣品之(a)不同轉速下之CV圖，(b)電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 89
圖3-32 Pt-SCM1-850-H2O2碳材樣品之(a)不同轉速下之CV圖，(b)電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 90
圖3-33 Pt-SCM1-350-H2SO4碳材樣品之(a)不同轉速下之CV圖，(b)電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 91
圖3-34 Pt-SCM1-550-H2SO4碳材樣品之(a)不同轉速下之CV圖，(b)電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 92
圖3-35 Pt-SCM1-850-H2SO4碳材樣品之(a)不同轉速下之CV圖，(b)電流密度
(j)對$\omega^{-1/2}$關係圖；ω為旋轉角頻率。 ... 93
圖3-36 SCM2s碳材樣品不同溫度石墨化程度之低角度XRD圖譜。 96
圖3-37 SCM2s碳材樣品不同溫度石墨化程度之高角度XRD圖譜。 96
圖3-38 SCM2s碳材樣品不同溫度下質量損失之TGA圖示。 97
圖3-39 SCM1s碳材樣品之氮氣等溫（77K）吸附/脫附曲線圖。 97
圖3-40 SCM1s碳材樣品之BJH孔徑分佈圖。 ... 98
圖3-41 SCM2s碳材樣品之FT-IR圖譜。 ... 98
圖3-42 SCM2s碳材樣品之TEM圖。 ... 100
圖3-43 SCM2s酸處理碳材樣品親水性對照圖（a~c為未修飾；d~f為H2O2
修飾後；g~i為H2SO4修飾後）。 ... 102
圖3-44 SCM1s碳材樣品酸處理官能化修飾之FT-IR圖譜。 102
圖3-45 SCM2s碳材樣品利用砂烷類官能化修飾之FT-IR圖譜。 104
圖3-46 Pt-SCM2S碳材樣品之低角度XRD圖譜。 ... 107
圖3-47 Pt-SCM2S碳材樣品之高角度XRD圖譜。 ... 108
圖3-48 Pt-SCM2s碳材樣品之TEM圖。 ... 110
圖3-49 Pt-SCM2s-TA碳材樣品之TEM圖。 ... 111
圖 3- 50 Pt-SCM2s-H_2O_2 碳材樣品之 TEM 圖。 .. 112
圖 3- 51 Pt-SCM2s-H_2O_2 碳材樣品之 TEM 圖。 .. 113
圖 3- 52 Pt-SCM2s-350 碳材樣品之循環伏安(CV)圖。 116
圖 3- 53 Pt-SCM1s-550 碳材樣品之循環伏安(CV)圖。 116
圖 3- 54 Pt-SCM1s-350 碳材樣品之循環伏安(CV)圖。 117
圖 3- 55 Pt-SCM2-350 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度(-j)對
ω^1/2 關係圖；ω為旋轉角頻率。 .. 118
圖 3- 56 Pt-SCM2-550 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度(-j)對
ω^1/2 關係圖；ω為旋轉角頻率。 .. 119
圖 3- 57 Pt-SCM2-850 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度(-j)對
ω^1/2 關係圖；ω為旋轉角頻率。 .. 120
圖 3- 58 Pt-SCM2-350-TA 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度(-j)
對ω^1/2 關係圖；ω為旋轉角頻率。 .. 121
圖 3- 59 Pt-SCM2-550-TA 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度(-j)
對ω^1/2 關係圖；ω為旋轉角頻率。 .. 122
圖 3- 60 Pt-SCM2-850-TA 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度
(-j)對ω^1/2 關係圖；ω為旋轉角頻率。 ... 123
圖 3- 61 Pt-SCM2-350-H_2O_2 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度
(-j)對ω^1/2 關係圖；ω為旋轉角頻率。 ... 124
圖 3- 62 Pt-SCM2-550-H_2O_2 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度
(-j)對ω^1/2 關係圖；ω為旋轉角頻率。 ... 125
圖 3- 63 Pt-SCM2-850-H_2O_2 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密度
(-j)對ω^1/2 關係圖；ω為旋轉角頻率。 ... 126
圖 3- 64 Pt-SCM2-350-H_2SO_4 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密
度(-j)對ω^1/2 關係圖；ω為旋轉角頻率。 ... 127
圖 3- 65 Pt-SCM2-550-H_2SO_4 碳材樣品之(a) 不同轉速下之 CV 圖， (b) 電流密
度(-j)對ω^1/2 關係圖；ω為旋轉角頻率。 ... 128
圖 3-66 Pt-SCM2-850-H_{2}SO_{4} 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對ω^{-1/2} 關係圖；ω為旋轉角頻率。 ... 129

圖 3-67 PtSCM1s 碳材樣品之高角度 XRD 圖譜。 .. 132
圖 3-68 SCM1s 碳材樣品之氮氣等溫 (77K) 吸附/脫附曲線圖。 132
圖 3-69 PtSCM1s 碳材樣品之 BJH 孔徑分佈圖。 ... 133
圖 3-70 PtSCM1s 碳材樣品之 TEM 圖。 .. 134
圖 3-71 PtSCM2s 碳材樣品之低角度 XRD 圖譜。 ... 136
圖 3-72 PtSCM2s 碳材樣品之高角度 XRD 圖譜。 ... 136
圖 3-73 PtSCM2s 碳材樣品之氮氣等溫 (77K) 吸附/脫附曲線圖。 136
圖 3-74 PtSCM2s 碳材樣品之 BJH 孔徑分佈圖。 ... 137
圖 3-75 PtSCM2s 碳材樣品之 TEM 圖。 .. 139
圖 3-76 PtSCM1s 與 PtSCM2s 碳材樣品不同溫度下質量損失之 TGA 圖示。
.. 141
圖 3-77 PtSCM1s 與 PtSCM2s 碳材樣品之循環伏安(CV)圖。 141
圖 3-78 不同合成製備方法之鉑金屬奈米中孔碳材活性比較之循環伏安 (CV) 圖。
.. 143
表目錄

表 1-1 孔洞性碳材分類表。 ... 10

表 2-1 自組裝合成法製備具不規則性結構中孔洞碳材(SCM1)負載 Pt 金屬前後之樣品名稱對照表。 ... 37
表 2-2 以自組裝合成方式製備具規則性結構中孔洞碳材(SCM2)負載 Pt 金屬前後之樣品名稱對照表。 ... 39
表 2-3 自組裝合成中孔洞碳材表面胺基官能化修飾樣品負載 Pt 金屬前後之名稱對照表。 ... 41
表 2-4 自組裝合成中孔洞碳材經硫酸/硝酸進行酸化修飾樣品負載 Pt 金屬前後之名稱對照表。 ... 42
表 2-5 自組裝合成中孔洞碳材經 H₂O₂ 進行酸化修飾樣品負載 Pt 金屬前後之名稱對照表。 ... 43
表 2-6 一步自組裝合成負載金屬 Pt 之中孔碳材樣品名稱對照表。 48

表 3-1 SCM1s 碳材樣品之物理性質一覽表。 .. 62
表 3-2 SCM1 系列中孔碳材經不同酸化表面修飾之物理性質。 66
表 3-3 SCM1 系列中孔碳材經表面胺基官能化修飾前後之物理性質。 69
表 3-4 Pt-SCM1s 碳材樣品之物理性質一覽表。 73
表 3-5 各陰極電極觸媒在氧氣還原反應交換電子傳遞數一覽表。 94
表 3-6 SCM2s 碳材樣品之物理性質一覽表。 .. 99
表 3-7 SCM2s 酸處理官能化修飾之物理性質一覽表。 103
表 3-8 SCM2s 碳材樣品利用砂烷類官能化修飾之物理性質一覽表。 104
表 3-9 SCM2s 碳材樣品之物理性質一覽表。 109
表 3-10 各陰極電極觸媒在氧氣還原反應交換電子傳遞數一覽表。 130
表 3-11 PtSCM1s 碳材樣品之物理性質一覽表。 133
表 3-12 PtSCM2s 碳材樣品之物理性質一覽表。 138
第一章 緒論

1.1 孔洞性材料之發展與應用

奈米科技的興起，讓許多除了奈米光電元件之外的材料，藉由奈米之特性紛紛的被研究發展，觸媒材料活性與比表面積成正比，所以成為一個重要的研究題材。『沸石』（原名為 zeolithos，意即 boiling stone），是屬於一種具有微孔洞奈米結構之礦石，最早於1756年，由瑞典礦物學家 Cronstedt 所發現，他察覺天然的矽鋁酸鹽礦石在浸入水中時會產生類似沸騰的現象，因而得名。後經研究發現沸石的孔洞大多數分佈於微孔（micropore；孔洞口徑小於1.5 nm）之尺度範圍，因其具備特殊且有序的孔洞結構與孔徑，可選擇性的吸附或篩選不同大小分子等特性，所以亦被統稱為分子篩（molecular sieves）。分子篩是 McBain 於1932年所提出來的概念，具有高孔洞性及奈米結構性質，使其有較高比表面積（300-700 m²/g），亦有適合的水熱、機械、低介電係數（dielectric constant）及結構穩定性等優點。沸石分子篩又因具有獨特的酸性與催化特性，除在天然界中有數十種外，自二十世紀中期起便亦可經由人工合成製備，迄今已達數百種不同結構，並開始被研究及應用。自1960年起，沸石更廣泛地被應用於石化工業中做為觸媒（催化劑）或吸附劑。早期沸石觸媒大多應用於煉
石工業中的碳氫化合物裂解、異構化、脫氫、加氫及小分子之催化與選擇性的吸附等應用方面。直到二十世紀末期，當中孔洞（mesopore，孔洞口徑介於 1.5～100 nm）結構分子篩材料才逐漸被研發出來以後，隨即引發熱烈的研究，並逐漸被應用於較大分子的催化，近二十年來，相關研究無論是在學術研發或工業應用，均有突破性的發展。

中孔洞分子篩剛開始是由砂酸鹽類層狀支撐物之概念去嘗試合成，但並無理想結果。直至 1992 年，美國美孚（Mobil）公司研發團隊利用帶正電之四級鈉鹽介面活性劑（surfactant）當一模板，與帶負電的砂鋁酸鹽相互結合，彼此經由自組裝（self-assembly）過程鍵結而成，成功的研發出新型中孔洞結構分子篩，稱之為 M41S^{[1,2,3]}（如圖 1-1 及圖 1-2 所示），這也是首度以人工合成方式研發出來的中孔洞分子篩，其結構特性如孔徑及孔道分佈等可藉由控制合成條件（如反應溫度、pH 值、起始反應物等）來調控。常見的有序中孔洞氧化矽材料（ordered mesoporous materials; OMMs）之孔洞大小範圍介於 1.5 至 50 nm，相較於一般傳統微孔沸石 OMMs 具有較高的比表面積（約 1000 m^2/g）、高孔洞性、高熱穩定性、小的體密度（bulk density）、表面修飾性等優點，可應用於較大分子的催化，故引起科學家之興趣與重視，因此，更多新型的中孔洞分子篩材料陸續地被合成出來，如 SBA-15^{[4]}、FSM-16^{[5]}、KIT-1^{[6]}、KIT-6、MSU-6^{[7]}、HMS^{[8]}等。
圖 1-1 中孔洞分子篩 MCM-41 之合成示意圖[3]。

圖 1-2 (a)MCM-41、(b)MCM-48、(c)MCM-50 之結構示意圖[2]。
1.2 奈米結構孔洞氧化矽材料

中孔洞分子篩材料的應用，受到許多科學家的重視，且積極的研究所相關課題，大略分為四大部分：

（1）孔壁結構：

M41S 系列為早期發展之孔洞材料，其孔壁均由氧化矽組成，後期科學家發展研究中，開始將一些具催化活性之金屬或金屬氧化物（metal oxides）等物質負載於中孔洞分子篩材料之骨架中，發現可以增加材料的催化活性，且影響中孔洞分子篩材料的穩定性與孔壁之厚度、結晶性及穩定度等，都極為相關。

（2）孔洞內部結構：

利用不同碳鍵長度之介面活性劑及添加擴孔劑，可調控中孔洞分子篩的孔洞大小。有機介面活性劑與無機二氧化硅組成骨架結構之間所存在作用力大小，會影響孔洞之形狀。合成系統之溫度及改
變介面活性劑微胞組成之能力，都與通透性和中孔洞結構有關。

（3）孔洞內部表面特性：

中孔洞矽材分子篩，由於無機氧化矽所組裝而成的矽骨架催化活性低，導致催化應用上容易受到限制，因此，在一些研究發展中，將孔洞材料的表面上做有機矽烷結構之官能化修飾，利用孔洞材料之高
表面積特性，進而改善材料本身表面特性增加其應用範圍\cite{25,26,27}。例如：將材料官能化修飾，將原本表面的 Si-OH 親水性（hydrophilic）的基團改變為疏水性（hydrophobic）基團。

（4）外觀形狀控制：在孔洞性材料外觀控制主要是由於自然界中有許多孔洞性物質均含有許多各式各樣之外觀形狀。其中，這些生物物質中有些為氧化硅之孔洞材料，因此，科學家們希望能藉由模擬生物成礦之方式來研究中孔洞分子篩材料之外觀晶型 \cite{28,29}。

1.2.1 SBA-15 簡介

M41S 系列分子篩利用陽離子型之介面活性劑被合成後，其他孔洞矽材料也陸續被發表出來。在 1998 年，Stucky 等人\cite{4}使用與 M41S 系列分子篩不同的介面活性劑，合成出中孔洞 SBA-15 分子篩，主要是使用中性之三區塊共聚高分子介面活性劑（neutral tri-block co-polymer surfactant），其結構為六角形堆積（hexagonal packing）（如圖 1-3 所示），具有高表面積（約 800 m2/g），其孔徑一般可調控於 5 ～30 nm 之間。
1.2.2 SBA-15 之合成與機制

SBA-15 主要是利用三區塊共聚高分子作為介面活性劑，與有機矽化合物經由自組裝過程合成出的中孔洞分子篩。最常被使用之三區塊共聚高分子之介面活性劑為 [poly(ethylene oxide)_n poly(propylene oxide)_m poly(ethylene oxide)_n]，又表示為 EO_n PO_m EO_n，其兩端 EO 區塊高分子屬於親水性，而中間 PO 區塊高分子則屬於疏水性^{30,31}，EO 與 PO 比例不同，其合成出的中孔矽材料也會有不同的孔洞大小，而在水溶液中 PO 會形成外部高分子疏水區塊，EO 則為內部親水區塊，相互組成一微胞 (micelle) 結構，添加有機矽化合物的同時，在水熱過程中，有機矽會產生聚合固化成堅硬的氧化矽（如圖 1-4 所示）,
最後將做為模板（template）之介面活性劑移除，即可獲得高表面積與孔洞體積，且有序孔洞結構的 SBA-15。

圖 1-4 SBA-15 之合成示意圖(a)介面活性劑、(b)微胞、(c)六角結構。

1.3 孔洞性碳材之簡介

Knox 等人在 1986 年，首先利用氧化矽凝膠（silica gel）做為固態模板合成孔洞性碳材料\(^{32}\); 他們在氧化矽凝膠中添加高分子聚合物進行聚合反應，使氧化矽顆粒上形成連續網狀之結構，接著利用高溫碳化高分子聚合物，再利用氫氟酸（HF）移除氧化矽組成的模板，即可獲得多孔性之碳材。Ryoo 等人隨後於 1998 年利用具有規則孔洞之中孔洞氧化矽分子篩，如 MCM-48、SBA-1、SBA-15 等做為模板\(^{33,34,35,36,37,38,39}\)合成出有序之中孔洞碳材（ordered mesoporous carbons; OMCs）。中孔洞碳材主要合成原理是以複製（replication）方式進行合成（圖 1-5 至圖 1-7），將液態之碳源（如：蔗糖...等），
注入中孔洞分子篩之孔洞中，並且使用麝酸當一觸媒，在高溫無氧環境下加高溫將其碳化，氧化矽孔洞中會先形成棒狀或空心狀碳材，在使用強鹼或氫氟酸（HF）將氧化矽之分子篩固態模板去除，即可獲得中孔洞碳材，此材料稱之為 CMK-n (n = 1-5) 系列。這一系列碳材均具有規則之孔洞排列，且具整齊性之中孔結構，孔洞大小約 2～6 nm，而且可選擇不同之分子篩固態模板去加以控制孔隙間的互通與連結。中孔固態分子篩 MCM-48 與 SBA-15 可用來複製合成 CMK-n 系列中的 CMK-1^{[33,34,36]}、CMK-3^{[35,40]} 及 CMK-5^{[37]} 等三種中孔洞碳材，如圖 1-5 至圖 1-7 所示。複製方法所合成之孔洞性碳材，一般依其孔洞大小可分為三類，列舉如表 1-1。
圖 1-6 (a) CMK-3 合成示意圖；(b) XRD 與 TEM 圖[35,37,40]。

圖 1-7 由 SBA-15 為模板複製出的(a)CMK-3 及(b)CMK-5 示意圖[37,38]；CMK-5 結構和 CMK-3 類似，但具有中空管狀的特殊結構[37]。
<table>
<thead>
<tr>
<th>定義</th>
<th>孔洞大小</th>
<th>範例</th>
</tr>
</thead>
<tbody>
<tr>
<td>微孔碳材</td>
<td>< 2 nm</td>
<td>Inverse zeolite$^{[39]}$</td>
</tr>
<tr>
<td>中孔碳材</td>
<td>2~50 nm</td>
<td>CMK-n: n = 1-5</td>
</tr>
<tr>
<td>大孔碳材</td>
<td>> 50 nm</td>
<td>Inverse opal$^{[41]}$</td>
</tr>
</tbody>
</table>

以整齊性中孔碳材（OMCs）而言，除含有中孔結構外亦可能含有微孔結構，其高比表面積（800～2500 m2/g）皆大於奈米碳管（carbon nanotube）與活性碳，利用此方式合成可大量生產碳材，且不受限於酸鹼環境之影響，且具有極高之穩定性，相較之下，其應用價值不亞於矽鋁分子篩。碳材對於水的親和性不高，但可藉由碳材之表面修飾來提高其親水性，使其更有許多應用價值。

1.3.1 孔洞碳材合成方法

一般在以複製法合成孔洞性碳材時，大多採用將碳源注入多孔性氧化矽分子篩模板材料中，並在高溫無氧環境下將其碳化處理的方式，而就其合成方法而論，又可大致分為氣相法與液相法兩種。

以液相合成法而言，碳源大多選擇含碳量高、質量較大的碳氫化
合物液體分子，利用含浸法先將碳源填充於模板中，並在真空或是無氧狀態下高溫碳化，最後再移除模板而獲得多孔碳材，如 Ryoo 等人合成 CMK-n 系列[12,13,14,17,18,19,20] 皆是以此方法合成。

而以氣相合成法而言，所使用的碳源多為甲烷、乙炔、乙烯等質量較小的碳氫化合物氣體分子或是直接加熱液態碳源使其氣化，此法不同於液相法之處，在於先將模板置於高溫環境下再通入甲烷等氣態碳源，使其裂解並於模板上碳化，最後再移除模板，一般稱之為氣相化學沉積法（Chemical Vapor Deposition；CVD）。另外亦可用電漿輔助氣相化學沉積法（Plasma-Enhanced CVD），此一合成機制與氣相化學沉積法相似，主要不同點在於利用高能電子打斷碳源之化學鍵，而非以高溫來裂解碳源，因此並不需要將整個反應系統加熱至高溫即可進行反應。

1.3.2 自組裝合成奈米中孔洞碳材簡介

前面所提及之孔洞性碳材，都是利用一具孔洞性無機硬模板（hard template；如 SBA-15）所合成的中孔洞碳材。在 1988 年，Lee 等人[42] 先利用有機軟模板（soft template）合成出整齊排列的有機奈米孔洞材料。有機中孔洞碳材之浮現，讓許多科學家想探究其獨特的物化特性，因此藉由自組裝（self-assembly）方式所合成的整齊排列中孔洞碳材（carbon mesoporous materials；CMMs）也開始受到注意，而目前自組裝合成奈米中孔洞碳材合成方式區分為兩種：
（一）在酸的環境下所合成；鹽酸當催化劑；（二）在鹼的環境下合成；氫氧化鈉當催化劑。起初在酸環境下所合成之中孔洞碳材，其結構穩定性不佳，所以使用軟模板合成中孔洞碳材需要注意四個重要條件：

（1）有機前驅物成份特性，必須是能以自組裝方式合成奈米結構；
（2）至少需各有一種形成孔洞（例：介面活性劑）及形成碳產物之成份（Phloroglucinol + Formaldehyde）；
（3）形成孔洞之成份必須能夠支撐碳化溫度，且又必須能在碳化時快速分解；
（4）碳產物之成分特性須是能相互聚合之材料，且當形成孔洞時，其會保持奈米結構。

1.3.3 自組裝合成奈米中孔洞碳材之合成方法

Zhao 等人\[46\]於 2006 年，以長鍊烷類當構想，利用商業用介面活性劑 Brij 當一軟模板，其分子式為 C_nH_{2n+1}(EO)_x (EO=ethylene oxide)，與有機樹脂（resorcinol-formaldehyde；phenolic resin）當碳源，但在碳化後仍無法獲得整其規則中孔洞結構，推論因為碳化時有機之介面活性劑無法迅速燃燒分解，導致產生太多碳，無法形成中孔洞碳材。而在 2004 年，Dai 等人\[47\]首先利用有機聚合物 PS-P4VP 當一軟模板與有機樹脂（Resorcinol-formaldehyde；phenolic resin）合成出高整齊規則中孔洞碳材，其主要是利用 PS-P4VP 與有機樹脂相互聚合且彼此間形成的氫鍵（hydrogen bonding）鍵結（如圖 1-8 所示），可讓結構更穩定，再經由碳化過程步驟合成出中孔碳結構，所形成的孔洞直徑約 33.7 ± 2.5 nm，壁厚約 0.9 ± 1.1 nm（圖 1-9）。但 PS-P4VP 對於中孔洞碳材合成雖然是極好的軟模板，但由於價格較為昂貴，無法大量生產，所以開始研究其他替代方式。2004 年\[48\]，三區塊共聚合物（triblock-copolymer；PEO_m-PPO_n-PEO_m；pluronic surfactants）軟模板開始被使用，Tanaka 等人\[49\]首先成功使用 pluronic 介面活性劑 F127\[49\]（PEO_{106}-PPO_{70}-PEO_{106}）合成出規則孔洞碳膜（carbon film）。
圖 1-8 利用 PS-P4VP 製成孔洞碳材料薄膜過程[47]。

圖 1-9 利用 PS-P4VP 製成孔洞碳材料薄膜 TEM 圖[47]。
Zhao 等人[46,50]於 2006 年利用不同三區塊共聚合物之介面活性劑當軟模板（例：F127、P123、F108 等）與有機樹脂（甲苯與甲醛混合），在鹼性環境下經由揮發誘導自組裝 (evaporation-induced self-assembly; EISA)[51] 方式，以有機-有機自組裝合成出 2-D（2-dimensional; hexagonal）和 3-D（3-dimensional; cubic）等不同結構之奈米中孔洞碳材[46,50,52,53]（命名為 FDU 系列碳材；圖 1-10），分別利用不同溫度碳化，其最高溫達 1400°C，獲得孔洞大小約 3～7 nm，比表面積最高可達 1490 m²/g⁻¹，其合成步驟主要分為五部份：

（1）使用有機樹脂當一碳源；

（2）介面活性劑與有機樹脂相互自主裝成中孔結構；

（3）經由熱聚合過程；

（4）移除軟模板；

（5）碳化過程。

其中又有三個主要因素影響最終結構：

（一）介面活性劑中的 PEO 與 PPO 體積比例；

（二）有機樹脂碳源與介面活性劑比例；

（三）碳化溫度設定。
2006 年 Dai 等人使用 phloroglucinol（1,3,5-trihydroxybenzene）及甲醛（Formaldehyde）当碳源，F127 當介面活性劑，在酸的環境下經由 EISA 方式，合成出纖維碳材，結構形成機制主要利用聚合物彼此間的氫鍵結合，使結構更為穩固（圖 1-10 及圖 1-11）。

揮發誘導自組裝(EISA)對於規則孔洞合成是很常見的方式，其過程主要利用濃度梯度（concentration gradient）誘導前驅物（precursor）依附在模板上之整齊排列，當有機溶液漸漸揮發後，會隨著前驅物分子相互連結，此為一不可逆過程，因此前驅物流動性漸漸消失，而合成一薄膜。EISA 合成的薄膜，會因為厚度不同而結構也有所差異，越靠近表層其結構越規則，越往內層則結構越不規則（圖 1-13）。
圖 1-10 有機樹脂聚合物合成中孔洞碳材示意圖。
圖 1-12 挥發誘導自組裝（EISA）方式之示意圖⁵⁵。

圖 1-13 EISA 合成之薄膜結構示意圖⁵⁷。
1.3.4 孔洞性碳材之修飾與應用

多孔碳材因具有相當高的表面積與孔體積及良好的結構、機械和熱穩定性，因此在應用的領域上相當的廣泛，包括氣體的分離、水和空氣的純化、異構化、層析、氧化[59]、催化[60,61]及氫氣或燃料[62]的儲存等。在微孔碳材方面，一般較適合於篩選分子、小分子的催化以及作為吸附劑[60,61]等應用；而中孔及大孔碳材則可應用在疏水性大分子的吸附，如葡萄糖、染料及維他命等，亦可應用在層析分離、電雙層高功率電池[63,64]與鋰電池[65]等，因此近年來不斷的有科學家與研究學者投入相關的合成開發、表面官能基修飾與應用等研究。

孔洞性碳材之表面官能基修飾已有許多文獻研究[66,67,68]，中孔洞碳材由於比表面積較大且親水性較差，所以利用酸鹼催化反應使中孔洞碳材表面修飾官能基加以應用，依照所需之應用修飾特定之官能基，最常用的是液態酸（例如，硫酸、氫氟酸、磷酸）[69,70,71,72]。（圖1-14所示）根據文獻瞭解，亦有些利用含氮矽化物（Silane）當做修飾官能基[73,74,75]。所以目前對於中孔洞碳材官能化修飾及應用，已有許多研究及發展。
圖 1-14 中孔洞碳材修飾官能基示意圖[68]。

1.3.5 負載金屬孔洞性碳材

最常見用來製備負載金屬中孔洞碳材的方法是以含浸法 (impregnation method) 置入貴重金屬，例如，將水當溶劑加入 H₂PtCl₆ 與孔洞性碳材一起攪拌數小時後再進行烘乾或室溫下陰乾後，再進而還原金屬，使得貴重金屬均勻的分散在碳材表面上。

本實驗室曾開發一種新穎的負載金屬中孔洞碳材的製備方法 [76,77]，即利用孔洞性的氧化硅（如 SBA-15、MCM41 等）為模板，利用毛細現象同時加入碳源（如 benzene、aniline、furfuryl alcohol 等）及貴重金屬前驅物（如乙醯丙酮鉑或釕化合物，platinum acetylacetonate；
Pt(CH(COCH_3)_2)_2 及/或 ruthenium acetylacetonate；Ru(CH(COCH_3)_2)_3 等)，升高温使碳源石墨化，其後再以氫氟酸(HF)酸洗去除氧化矽模板。此種方法的優點是在升溫石墨化的過程之中貴重金屬(Pt, Ru)也會隨之還原而不需再以化學藥劑或氫氣來還原金屬，而得到負載鉑/釕金屬的中孔洞碳材(Pt/Ru-CMM)（圖 1-15）。

此外，Holmes 等人[78]亦嘗試先以含浸法(impregnation)將金屬觸媒放置於矽模板上，再利用含有金屬之模板加入碳源合成出碳材，最後再將模板移除，而得到負載鈷(Co)觸媒的中孔洞碳材 Co/CMM（圖 1-16）。

![圖 1-15 合成含貴重金屬鉑觸媒中孔洞碳材 Pt/CMM 之示意圖](Image.png)[76]。
圖 1-16 合成含金屬 Co 觸媒中孔洞碳材 Co/CMM 之示意圖 [78]。

在自組裝合成奈米中孔洞碳材負載金屬觸媒的方式，亦與使用矽模版複製法合成碳材方式相同，於碳材合成後使用含浸法，或者利用本實驗室開發的方法，在合成過程中將貴重金屬前驅物水溶液加入自組裝合成過程中，使金屬直接負載於中孔洞碳材中。

1.4 負載金屬孔洞性碳材在燃料電池之應用

1.4.1 燃料電池

燃料電池是將化學能直接轉換成電能的裝置，一般內燃機則是將燃燒產生之熱能再轉換為電能。Grove 等人 [79] 於 1839 年，利用稀硫酸溶液當一電解質，使用 Pt 當一電極，通入氫氣及氧氣，而會獲得
一電解水之逆反應，這新技術不須經由燃燒而可獲得電能，也啟發了許多科學家對於電化學之研究。Mond 及 Langer 等人在 1889 年時，利用空氣與工業媒氣做為反應物，試著製作出燃料電池，也首先將其命名為 Full Cell。1899 年時，Nernst 首度發現固態電解質的導電行為，Baur 和 Preis 於 1937 年時，利用陶瓷成功製作出陶瓷型燃料電池[80]。在經過了一個多世紀的研究，燃料電池才因緣際會地應用於美國太空計畫上，以及隨著能源危機的出現之下，而更蓬勃的發展起來。

燃料電池的基本原理是利用陽極催化劑將氧化物（如：氫氣、甲醇及天然氣等）所分解產生之電子和氫離子，氫離子則經由質子交換膜（proton exchange membrane）與還原劑（如：氧氣）還原成水（圖 1-17），其反應式如下：

陽極反應： \[\text{H}_2 \rightarrow 2\text{H}^+ + 2e^- \] (式 1-1)
或 \[\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_2 + 6\text{H}^+ + 6e^- \] (式 1-2)

陰極反應： \[1/2\text{O}_2 + 2\text{H}^+ + 2e^- \rightarrow \text{H}_2\text{O} \] (式 1-3)
或 \[3/2\text{O}_2 + 6\text{H}^+ + 6e^- \rightarrow 3\text{H}_2\text{O} \] (式 1-4)

燃料電池與一般傳統電池不同點在於傳統電池是一種儲存能量裝置，利用化學能來發電，當內部化學藥劑反應殆盡時，便無法使用；而燃料電池可不斷補充燃料讓電池一直提供電源，且其用途甚廣，如可攜帶式小型電源供應器、車輛動力來源甚至是大型的發電廠都可使用，是一種極具潛力之發電裝置。
1.4.1.1 燃料電池種類

燃料電池種類繁多，可以利用操作溫度來區分彼此類型，主要可分為三類:

（一）低溫型：溫度低於 300 ℃，鹼性型、高分子薄膜燃料電池。

（二）中溫型：溫度介於 150~300 ℃，磷酸燃料電池。

（三）高溫型：溫度高於 300 ℃，固態氧化物類型，熔融碳酸鹽燃料電池。

但燃料電池之種類主要仍是以電池內部之電解質來加以區分，如鹼性燃料電池、磷酸燃料電池、固態氧化物燃料電池、熔融碳酸鹽燃料電池。
（A）鹼性燃料電池（Alkaline Fuel Cell；AFC）：

此類型是最早發展之燃料電池，但由於鹼性溶液易與二氧化碳發生反應，進而生成碳酸鈉類，碳酸鈉類會增加電解質之阻抗，導致性能下降，因此只能使用於高純度之氣體作為燃料，目前運用於太空梭及潛艇等特殊用途。

（B）磷酸燃料電池（Phosphoric Acid Fuel Cell；PAFC）：

PAFC 被稱為第一代燃料電池，目前 PAFC 裝置效能已可達數千千瓦至數億瓦不等。此類燃料電池之電解質是利用碳化硅作為母片，吸附高溶度之磷酸水溶液，其操作溫度約在 200 ℃左右，如果將觸媒層添加白金（Pt）則在此溫度下可以被提高電極之反應度，所排放出之廢熱（約 60 ~ 190 ℃）亦可回收再利用。

但其仍有缺點，其使用碳化硅材料，設備價格皆為昂貴，且燃料中若含有一氧化碳，則會造成毒化現象。

（C）固態氧化物燃料電池（Solid Oxide Fuel Cell；SOFC）：

SOFC 之電解質為固態、無孔隙之金屬氧化物，藉由氧離子在晶體中穿梭以進行離子傳送，常以氧化鋯作為電解質，操作溫度介於 800 ~ 1000 ℃之間，由於工作溫度極高，因此電池材料受到限制，以陶瓷或是金屬氧化物等耐高溫當電池材料。其優
點在於不需使用貴重金屬 Pt 當作觸媒，可降低成本，亦不需考慮一氧化碳毒化之問題，但缺點在於工作溫度極高，材料選擇性受限。

（D）熔融碳酸鹽燃料電池（Molten Carbonate Fuel Cell；MCFC）：

MCFC 使用鹼金屬（鋰、鈉、鉀）碳酸鹽當一電解質，操作溫度介於 600 ~ 700 ℃之間，需控制在鹽類熔點之上，才能夠發揮離子傳導功能。在陰極上的二氧化碳與氧氣反應，會生成碳酸根離子，在經由電解質移動至陽極與氫氣反應，反應後會生成水與二氧碳，反應中二氧化碳可重複循環利用。此燃料電池電極觸媒使用較低廉價格的鍶金屬或是鍶金屬氧化物即可，亦不太受一氧化碳毒化影響。其發熱溫度超過 500 ℃以上，適合 bottoming cycle 和工業製成加熱等用途。

（E）質子交換膜燃料電池（Proton Exchange Membrane Fuel Cell；PEMFC）：

PEMFC 利用陽離子（質子）交換膜當一電解質，1970 年杜邦 (Dupont) 公司研發成功的氟樹脂系離子交換膜 Nafion® 及其衍生產品，此交換膜具有很好的化學穩定性，可滅低電解液稀釋及霧化等問題，因此至今仍極為受到重用。PEMFC 之電極觸媒目前大都以 Pt、Ru 等貴重金屬當一觸媒使用，工作溫度一般在
70 ~ 200 ℃之間，功率低於 500kW，適用於較小型纖供電系統，操作系統雖然容許少量 CO 存在，但仍會有電極毒化問題存在。

目前燃料電池中，以質子交換膜和直接甲醇燃料電池兩者為最具有潛力運用於攜帶式與家用式電力系統，根據研究指出[81,82,83,84]，高分子電解質薄膜對於燃料電池是極為重要的部份，要符合高分子電解質薄膜，需要具備幾項特質[85]：

（1）有快速的質子傳導率；

（2）良好的機械性質與化學和熱稳定性；

（3）燃料的低滲透性；

（4）具有高電阻。

由杜邦公司所研發 Nafion®所製成之質子交換膜已經被廣泛應用於 PEMFC 與 DMFC。Nafion®是由四氟乙烯與全氟-2-(磺酸乙氧基)丙基乙烯基醚所合成的共聚物（圖 1-18 所示），針對不同特質可以製成具有較薄厚度、對水有較低膨潤度、高機械強度及能夠減少 Pt 金屬的流失，等等各種不同特性薄膜，這對於提高其效能有很大益處。目前有各種不同薄膜與 Nafion®之產品，如 collodion[86]、PTFE[87,88]、含有金屬磷酸的 Nafion®[88,89,90,91]、montmorillonite salts[92]、metal phosphates[93,94,95]、金屬氧化物[96,97,98]及 Nafion®修飾之
多孔砂\(^{99,100,101}\)等。

（F）直接甲醇燃料電池（Direct Methanol Fuel Cell；DMFC）

直接甲醇燃料電池（DMFC）与 PEMFC 類似，特性上大致相同，兩者差異在於 PEMFC 需加裝重組器，再以甲醇或汽油作為燃料，因此系統較為複雜且龐大。

![DMFC Structure Diagram](image)

圖 1-18 Nafion\(^\circ\)結構示意圖\(^{102}\)。

1.4.1.2 DMFC 的原理與結構：

DMFC 主要是使用氣態或是液態之甲醇作為燃料，陽極會將甲醇氧化，進而產生氫離子，氫離子在經由高分子電解質傳送至陰極與氧氣結合生成水（圖 1-19）所示。其反應如下：

陽極：\(\text{CH}_3\text{OH}+\text{H}_2\text{O}\rightarrow\text{CO}_2+6\text{H}^++6\text{e}^-\) \(\text{(式 1-5)}\)

陰極：\(3/2\text{O}_2+6\text{H}^++6\text{e}^-\rightarrow3\text{H}_2\text{O}\) \(\text{(式 1-6)}\)

電池總反應式：\(\text{CH}_3\text{OH}+3/2\text{O}_2\rightarrow2\text{H}_2\text{O}+\text{CO}_2\) \(\text{(式 1-7)}\)
總反應式相當於燃燒甲醇生成二氧化碳與水，其理論反應式電動勢為 1.2 V，與氫氣燃料電池的 1.23 V 相當接近，這也是直接甲醇燃料電池受到重視，且於近幾年研究發展相當快速的原因之一。但實際上獲得電位與理論值會有所差異，因為系統進行氧化與還原之過程中無法避免能量的損失，而造成僅有 0.4 ~ 0.8 V（圖 1-20 所示）可使用。

\[
\text{CH}_3\text{OH} + \text{H}_2\text{O} \rightarrow \text{CO}_3 + 6\text{H}^+ + 6\text{e}^- \quad \text{0.029V}
\]

\[
\frac{3}{2}\text{O}_2 + 6\text{H}^+ + 6\text{e}^- \rightarrow 3\text{H}_2\text{O} \quad \text{0.4~0.8V}
\]

\[
\text{Anode loss} \quad \text{Cathode loss} \quad \text{1.23V}
\]

圖 1-19 燃料電池可用電位及陰陽兩極損失電位示意圖。
1.4.2 DMFC 電極所面臨的問題

在燃料電池中幾個重要部份，薄膜、觸媒、氣體擴散層及陰、陽電極面等，每各環節丝丝入扣，都會彼此影響燃料電池本身的效能，科學家也紛紛對於每個環節的問題加以研究探討[105]，除了製造價格昂貴等因素，目前在於陰、陽電極上都遇到相關瓶頸，這都必須一一加以克服與突破。

在陽極（Anode）所面臨解決的問題有：

（1）陽極氧化：陽極觸媒一般是利用貴重金屬（如 Pt），但在另一方
面因甲醇氧化過程中，常伴隨著甲酸、甲醛和一氧化碳之中間產物，這些物質容易與金屬觸媒 Pt 結合，而造成觸媒的活性面積減少，氧化作用減低。

(2) 質量傳遞：由於中孔洞碳材當電極時需與甲醇相互作用，因為碳材本身孔道過長，導致甲醇進入孔道內無法順利通過孔道，導致效能降低。

在陰極（Cathode）所面臨解決的問題有：

(1) 甲醇穿透現象(cross-over)：在陽極的氧化物甲醇容易穿透電解層，使得陽極觸媒除了必須要還原氧氣外還需氧化甲醇，造成陰極還原效率降低，電位下降。

(2) 穩定性與耐久性：由於陽極處於高電壓下，奈米金屬 Pt 粒子會隨著反應時間增長而漸漸相互聚集成大顆粒，導致電極藉由金屬催化的效能漸漸下降。

(3) 三相共存效應：由電極工作處於碳材（固相）對於溶解液（液相）與氧氣（氣相）等三相共存環境，造成氣體流入中孔碳材所需時間是受到限制，而導致效能降低。

(4) 碳載體（carbon support）：碳材特性亦會影響電極效能，所以希望利用具有高表面積、石墨化特性佳等材料（例如：孔洞碳材）。
1.5 研究動機

近年來由於能源危機，現今石化工業已是人類依賴傳統能源之一且與生活密不可分，如今石油能源產量日益減少，導致石油價格飆漲，使得人類面臨另一波能源危機，又因為石化燃料帶來的廢氣排放過量以及二氧化碳過量生產，導致溫室效應產生，讓各國漸漸重視這些問題之嚴重性，也是各國科學家積極想設法解決能源短缺以及日趨嚴重的環保議題，目前各國響應推動節能減碳、可替代能源開發等兩項初步解決方案，此也是本實驗室刻不容緩加以研究之課題。本實驗室瞭解孔洞性碳材料因為具有高表面積與孔體積，及良好的有序孔洞結構、機械和水熱穩定性，因此可利用於各種領域中。例如：儲氫、燃料電池、超級電容等等，本實驗室主要研究燃料電池電極上之應用。

然而積極開發燃料電池主要因其有許多優點，例如(1)高效率：理論上能量的轉換率為 80%；(2)低污染：經由利用氫及氧的化學反應，產生電流及水；(3)無噪音：因無任何機械運轉而不會產生噪音。燃料電池這些優點相當符合環境保護的需求。更能因應目前能源危機所帶來能源短缺的問題。

目前已經有許多研究相當然利用高比表面積之孔洞性材料應用於燃料電池或儲氫等相關議題上，而前面所提到的中孔碳材合成方
式，都是利用一具孔洞型硬模板（hard template；如 SBA-15）加入有
机化合物当一碳源後，再移除模板即可得到一孔洞性碳材，此合成方
式步骤繁雑，且需额外利用高价格之矽化合物，在於商业用製备材料
上較為劣勢，所以希望能够藉由較为低价格之有机聚合物当原料，
直接利用简单取得又方便材料直接合成中孔洞碳材，可省略製作繁雑
矽模板再移除等步骤，並且在於价格上更可以有更大经济效益等优
势。而吾人又利用贵重金属载體铂（Pt）负载於中孔洞碳材上，以利
使用 DMFC 或 PEMFC 等燃料电池中当一电极，而本实验又分為有
規則性結構，與無規則性結構等高表面積之自組装合成奈米中孔洞碳
材，利用化学还原方式將贵重金属铂（Pt）还原，进而测量其差异性。
而碳材本身性质較为疏水（hydrophobic），所以本实验又对于中孔洞
碳材表面进行修饰反应，希望利用亲水（hydrophilic）官能基能夠增
加中孔洞碳材本身亲水性质，所以利用矽化物（silane）及
H₂SO₄/HNO₃；H₂O₂ 两种酸催化方式进行修饰，再负载 Pt 於中孔洞碳
材上。而本实验室曾開發一種新颖合成方式，在合成過程中直接將貴
重金属加入[76,77]，經由升溫過程直接还原金属，更可節省负载金属時
間，直接一步合成（one pot synthesis）出可運用於燃料电池之材料。
吾人利用各种物化分析与光譜實验技术，如粉末 X 光繞射(PXRD)、
等温氮氣吸附/脱附(N₂ adsorption/desorption isotherm)、熱重分析儀
(TGA)、恆電位測試儀 (CV)、穿透式電子顯微鏡 (TEM) 等，對各種負載貴重金屬觸媒孔洞性碳材料樣品之物化特性詳加鑑定。

本研究所獲致之結果，除可望將增進吾人對奈米中孔洞結構之碳材與負載貴重金屬觸媒孔洞性碳材料之基礎瞭解外，並期望提升此類材料在吸附、催化及能源，如氫氣能源儲存與燃料電池等相關議題之應用效能與研發技術。
第二章 實驗方法與步驟

2.1 化學藥品與試劑

<table>
<thead>
<tr>
<th>藥品名稱</th>
<th>來源</th>
<th>純度</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resorcinol</td>
<td>Sigma</td>
<td>98%</td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Acros</td>
<td>37%</td>
</tr>
<tr>
<td>Phloroglucinol</td>
<td>Sigma</td>
<td>99+%</td>
</tr>
<tr>
<td>Hydrochloric acid：HCl</td>
<td>Acros</td>
<td>37%</td>
</tr>
<tr>
<td>3-[2-(2-Aminoethylamino)ethylamino]propyl-trimethoxysilane</td>
<td>Acros</td>
<td>--</td>
</tr>
<tr>
<td>Sulfonic acid：H$_2$SO$_4$</td>
<td>Acros</td>
<td>98%</td>
</tr>
<tr>
<td>Nitril acid：HNO$_3$</td>
<td>Acros</td>
<td>65%</td>
</tr>
<tr>
<td>F127（EO${106}$PO${70}$EO$_{106}$；Mw = 12600）</td>
<td>Sigma</td>
<td>99%</td>
</tr>
<tr>
<td>hydrogen hexachloroplatinate (IV)；H$_2$PtCl$_6$</td>
<td>Acros</td>
<td>99.9%</td>
</tr>
<tr>
<td>NaBH$_4$</td>
<td>Acros</td>
<td>98%</td>
</tr>
<tr>
<td>H$_2$O$_2$</td>
<td>Acros</td>
<td>35%</td>
</tr>
<tr>
<td>toluene</td>
<td>Acros</td>
<td>99.5%</td>
</tr>
<tr>
<td>ethanol</td>
<td>Shimakyu</td>
<td>99.5%</td>
</tr>
<tr>
<td>氣氮</td>
<td>亞普</td>
<td>工業級</td>
</tr>
</tbody>
</table>
2.2 實驗流程與樣品製備

2.2.1 自組裝合成奈米中孔碳材之合成步驟

自組裝合成奈米中孔碳材係藉由有機-有機（organic-organic）聚合物間彼此以自組装（self-assembly）方式聚合而成，所合成之碳材結構分為不規則性與規則性兩類，其合成方式如下：

(A) 具不規則性結構中孔洞碳材(SCM1)之合成步驟：

以三區塊聚合物F127（EO_{106}PO_{70}EO_{106}；Mw＝12600）做為軟模板，Phloroglucinol及Formaldehyde為碳源前驅物。首先，先將1.25 g介面活性劑（F127）與1.25 g Phloroglucinol（重量比1：1）加入去離子水與乙醇（重量比1：1），經完全攪拌溶解後，再加入少量37％鈣酸攪拌3小時讓有機溶液進行催化作用，當溶液呈現淡粉紅色，再加入37％甲醛1.3 g攪拌24小時讓有機溶液開始進行聚合作用，初始攪拌1小時候溶液會呈現分層，繼續反應後下層會形成膠狀聚合物，經過離心分離後，放進烘箱於100°C下放置24小時使結構更穩固，此時將所得到的合成樣品進行分別在350、550、850°C等溫度進行石墨化鍛燒，既可得到不規則結構的自組裝合成奈米中孔碳材，其升溫程序為100至400°C每分鐘1°C，400°C以上每分鐘5°C，且在最高溫度下停留2小時，其流程如圖2-1所示。表2-1為負載鉑金屬前後之樣品名稱

100°C 1°C
對照表。

<table>
<thead>
<tr>
<th>Phloroglucinol + F127 (EO_{106}PO_{70}EO_{106}) + 乙醇 + 去離子水</th>
</tr>
</thead>
<tbody>
<tr>
<td>擺拌至完全溶解</td>
</tr>
<tr>
<td>加入 37 wt% 鹽酸</td>
</tr>
<tr>
<td>在室溫下進行攪拌3小時</td>
</tr>
<tr>
<td>加入 37 wt% 甲醇 1.37g</td>
</tr>
<tr>
<td>室溫下攪拌24小時</td>
</tr>
<tr>
<td>放入100℃烘箱，放置24小時</td>
</tr>
<tr>
<td>100至400℃每分鐘 1℃，400℃以上每分鐘 5℃，在最高溫度下停留 2 小時</td>
</tr>
</tbody>
</table>

圖 2-1 具不規則性結構中孔洞碳材(SCM1)之合成步驟。

表 2-1 自組裝合成法製備具不規則性結構中孔洞碳材(SCM1)負載Pt金屬前後之樣品名稱對照表。

<table>
<thead>
<tr>
<th>未負載 Pt 樣品名稱</th>
<th>負載 Pt 後樣品名稱</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350</td>
<td>Pt-SCM1-350</td>
</tr>
<tr>
<td>SCM1-550</td>
<td>Pt-SCM1-550</td>
</tr>
<tr>
<td>SCM1-850</td>
<td>Pt-SCM1-850</td>
</tr>
</tbody>
</table>
（B）具規則性結構中孔洞碳材(SCM2)之合成步驟：

以三區塊聚合物F127（EO_{106}PO_{70}EO_{106}；Mw = 12600）做為軟模板，Resorcinol及Formaldehyde為碳源前驅物。首先，先將2.5 g介面活性劑（F127）加入去離子水與乙醇(體積百分比1：1)經完全攪拌溶解加入1.65 g Resorcinol（莫耳數比2：1）繼續攪拌溶解，加入少量37%鹽酸繼續攪拌讓有機溶液進行催化作用，當溶液呈現淡褐色，再加入37%甲醛2.5 g讓有機溶液開始進行聚合作用，攪拌結束後將液體靜置約4天，其有機溶液漸漸分層，靜置過程中下層會形成膠狀聚合物，經過離心分離後，放進烘箱85℃放置約2天使結構更穩固，此時將所得到的合成樣品分別在350、550、850等溫度進行石墨化鍍燒，即可得到規格結構的自組裝合成奈米中孔碳材，其升溫程序為100至850℃每分鐘1℃，且在最高溫度下停留3小時，其流程如圖2-2所示。表2-2為該類樣品在負載鉑金屬前後之名稱對照表。
Resorcinol + F127(EO₁₀₆PO₇₀EO₁₀₆) + 乙醇 + 去離子水

△ 搖拌完全溶解

加入 37 wt% 鹽酸

△ 在室溫下進行搖拌

加入 37 wt% 甲醛 1.37g

△ 在室溫下進行搖拌

將溶液靜置約4天

△ 放進85℃烘箱約2天

100℃至 850℃每分鐘 1℃，在最高溫度下停留 3 時間

圈 2-2 具規則性結構中孔洞碳材(SCM2)之合成步驟。

表 2-2 以自組裝合成方式製備具規則性結構中孔洞碳材(SCM2)負載 Pt 金屬前後之樣品名稱對照表。

<table>
<thead>
<tr>
<th>未負載 Pt 樣品名稱</th>
<th>負載 Pt 後樣品名稱</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM2-350</td>
<td>Pt-SCM2-350</td>
</tr>
<tr>
<td>SCM2-550</td>
<td>Pt-SCM2-550</td>
</tr>
<tr>
<td>SCM2-850</td>
<td>Pt-SCM2-850</td>
</tr>
</tbody>
</table>
2.2.2 自組裝合成中孔碳材之表面胺基官能化修飾

將 SCM1 或 SCM2 中孔碳材粉末，加入含三個胺基（-NH-）的有機 砂烷類 3-[2-(2-Aminoethylamino)ethylamino]propyltrimethoxysilane \(\text{C}_{10}\text{H}_{27}\text{N}_{3}\text{O}_{3}\text{Si} \); TA) 2.1 mL 並以甲苯 (toluene) 12.5 mL 當溶劑於 110 ℃下迴流 16 小時後抽乾過濾，並以乙醇和甲苯洗淨，最後放於室溫下陰乾，即得 SCMx-y-TA 系列樣品 \(x = 1, 2 \); 分別代表不規則性及規則性中孔碳材; 而 y 則代表在無氧環境下石墨化鍍燒的溫度，本研究中 y = 350, 550 及 850 ℃)，其流程圖 2-3 所示。表 2-3 為該系列樣品負載鈷金屬前後之名稱對照表。

![流程圖](image)

圖 2-3 自組裝合成中孔碳材表面胺基官能化修飾流程圖。
表2-3 自組裝合成中孔洞碳材表面胺基官能化修飾樣品負載Pt金屬前後之名稱對照表。

<table>
<thead>
<tr>
<th>未負載Pt之SCM1表面胺基官能化修飾樣品名稱</th>
<th>負載Pt後之SCM1表面胺基官能化修飾樣品名稱</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350-TA</td>
<td>Pt-SCM1-350-TA</td>
</tr>
<tr>
<td>SCM1-550-TA</td>
<td>Pt-SCM1-550-TA</td>
</tr>
<tr>
<td>SCM1-850-TA</td>
<td>Pt-SCM1-850-TA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>未負載Pt之SCM2表面胺基官能化修飾樣品名稱</th>
<th>負載Pt後之SCM2表面胺基官能化修飾樣品名稱</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM2-350-TA</td>
<td>Pt-SCM2-350-TA</td>
</tr>
<tr>
<td>SCM2-550-TA</td>
<td>Pt-SCM2-550-TA</td>
</tr>
<tr>
<td>SCM2-850-TA</td>
<td>Pt-SCM2-850-TA</td>
</tr>
</tbody>
</table>

2.2.3 自組裝合成奈米中孔碳材之表面胺基化修飾

由於奈米中孔洞碳材較於疏水，所以許多研究都想克服並解決其疏水特性，因而希望進行表面胺基化修飾，使碳材表面修飾親水之官能基，使碳材能夠更加親水。吾人嘗試利用兩種胺基化處理方法，進行碳材表面之修飾，其步驟敘述如後：

（A）利用硫酸/硝酸（H₂SO₄/HNO₃）進行胺基化修飾

先取40 mL硫酸（H₂SO₄）與40 mL硝酸（HNO₃）混和，加入SCM1或SCM2中孔洞奈米碳材粉末中，於室溫下攪拌3小時後抽乾過濾，再利用大量去離子水洗淨後於室溫下陰乾，其流程圖2-4所示。
表 2-4 为该类样品在负载铂金属前后的名称对照表。

![流程图](attachment:image)

图 2-4 自组装合成中孔洞材料以硫酸/硝酸进行酸化修饰流程图。

表 2-4 自组装合成中孔洞材料经硫酸/硝酸进行酸化修饰样品负载 Pt 金属前后的名称对照表。

<table>
<thead>
<tr>
<th>未负载 Pt 之 SCM1 经硫酸/硝酸表面酸化修饰样品名称</th>
<th>负载 Pt 后之 SCM1 经硫酸/硝酸表面酸化修饰样品名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350- H₂SO₄</td>
<td>Pt-SCM1-350- H₂SO₄</td>
</tr>
<tr>
<td>SCM1-550- H₂SO₄</td>
<td>Pt-SCM1-550- H₂SO₄</td>
</tr>
<tr>
<td>SCM1-850- H₂SO₄</td>
<td>Pt-SCM1-850- H₂SO₄</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>未负载 Pt 之 SCM2 经硫酸/硝酸表面酸化修饰样品名称</th>
<th>负载 Pt 后之 SCM2 经硫酸/硝酸表面酸化修饰样品名称</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM2-350- H₂SO₄</td>
<td>Pt-SCM2-350- H₂SO₄</td>
</tr>
<tr>
<td>SCM2-550- H₂SO₄</td>
<td>Pt-SCM2-550- H₂SO₄</td>
</tr>
<tr>
<td>SCM2-850- H₂SO₄</td>
<td>Pt-SCM2-850- H₂SO₄</td>
</tr>
</tbody>
</table>

（B）利用过氧化氢（H₂O₂）进行酸化修饰

先取 80 mL 过氧化氢（H₂O₂），加入 SCM1 或 SCM2 中孔洞奈米碳材料粉末中，于 80 ℃下搅拌 3 小时后抽干过滤，再利用大量去离子水洗净后置于室温下阴乾，其流程图 2-5 所示。表 2-5 为该类样品在
負載鈷金屬前後之名稱對照表。

表 2-5 自組裝合成中孔洞碳材以 H₂O₂進行酸化修飾流程圖。

<table>
<thead>
<tr>
<th>未負載 Pt 之 SCM1 經 H₂O₂表面酸化修飾樣品名稱</th>
<th>負載 Pt 後之 SCM1 經 H₂O₂表面酸化修飾樣品名稱</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350-H₂O₂</td>
<td>Pt-SCM1-350-H₂O₂</td>
</tr>
<tr>
<td>SCM1-550-H₂O₂</td>
<td>Pt-SCM1-550-H₂O₂</td>
</tr>
<tr>
<td>SCM1-850-H₂O₂</td>
<td>Pt-SCM1-850-H₂O₂</td>
</tr>
<tr>
<td>未負載 Pt 之 SCM2 經 H₂O₂表面酸化修飾樣品名稱</td>
<td>負載 Pt 後之 SCM2 經 H₂O₂表面酸化修飾樣品名稱</td>
</tr>
<tr>
<td>SCM2-350-H₂O₂</td>
<td>Pt-SCM2-350-H₂O₂</td>
</tr>
<tr>
<td>SCM2-550-H₂O₂</td>
<td>Pt-SCM2-550-H₂O₂</td>
</tr>
<tr>
<td>SCM2-850-H₂O₂</td>
<td>Pt-SCM2-850-H₂O₂</td>
</tr>
</tbody>
</table>
2.2.4 以化學還原法負載金屬鉑

使用含金屬鉑（Pt）之錯和物 H₂PtCl₆ 為前驅物，配置含量約 20 wt% Pt 之水溶液，與前 2.2.1 至 2.2.3 節中所述各種修飾前後（未負載 Pt）之自組裝合成奈米中孔洞碳材（見表 2-1 至表 2-5）相互混和攪拌 30 分鐘後，再加入過量 1M NaBH₄ 做為還原劑攪拌 1 小時後，利用離心方式將碳材離心，並以去離子水清洗兩次，再將碳材於室溫下陰乾。其流程圖 2-6 所示，所得各負載金屬鉑樣品名稱分列於表 2-1 至表 2-5。

![流程圖](image)

圖 2-6 以化學還原法負載金屬 Pt 在修飾前後之中孔洞碳材流程圖。
2.2.5 一步自组装合成负载金属铂之中孔碳材

如1.3.5节所述，本实验室已开发一种新颖的负载金属中孔洞碳材料的一步合成方法[76, 77]，可在复製製备中孔碳相的过程中，有效地将奈米级金属颗粒均匀分散在碳相孔道之中（见图1-15）。吾人也采用此一方法，在复製製备中孔碳相的过程中，同时加入贵重金属前躯物。将两种合成碳相利用同方式[76]分别加以合成与应用：

（A）一步合成具不规则性结构负载金属铂中孔洞碳材

以三区块聚合物F127（EO_{106}PO_{70}EO_{106}；Mw＝12600）当作软模板，Phloroglucinol及Formaldehyde作为碳源前躯物。首先，先将1.25g介面活性剂（F127）与1.25gPhloroglucinol（重量比1：1）加入去离子水与乙醇（重量比1：1），经完全搅拌溶解后再加入少量37%盐酸搅拌3小时让有機溶液进行催化作用且加入含金属铂（Pt）之錯合物H_{2}PtCl_{6}當金属前躯物，再加入37%甲醛1.3g搅拌24小时让有机溶液开始进行聚合作用，初始搅拌1小时候溶液会呈现分层，继续反应下层会形成胶状聚合物，经过离心分離後，放进烘箱100°C放置24小时使結構更稳固，此时既可将所得到的合成樣品進行850°C石墨化鈷烧，既可得到具不规则性結構的一步自组装合成负载金属之奈米中孔碳材，其升温程序为100 至 400°C每分钟1°C，400°C以上每分钟
5℃，且在最高溫度下停留2小時，其流程如圖2-7所示，表2-6為該類樣品在負載鈷金屬前後之名稱對照表。

!流程圖

圖2-7 一步自組裝合成具不規則性結構負載金屬鈷之中孔碳材流程圖。

（B）一步合成具規則性結構負載金屬鈷中孔洞碳材

以三區塊聚合物F127 (EO₁₀₆PO₇₀EO₁₀₆；Mw=12600) 當一軟模板，Resorcinol及Formaldehyde做為碳源前驅物。首先，先將2.5g介面活性劑 (F127) 加入去離子水與乙醇（體積百分比1:1）經完全攪拌溶解加入1.65g Resorcinol（莫耳數比2:1）繼續攪拌溶解，
加入少量37%鹽酸及含金屬鉑(Pt)之錯合物H₂PtCl₆當金屬前驅物，
共同攪拌讓有機溶液進行催化作用，再加入37%甲醛2.5g攪拌讓有
機溶液開始進行聚合作用，攪拌結束後將液體靜置約4天，其有機溶
液漸漸分層，靜置過程中下層會形成膠狀聚合物，經過離心分離後，
放進烘箱85℃放置約2天使結構更穩固，此時既可將所得到的合成
樣品進行850℃碳化鍛燒，既可得到具規則性結構的一步自組裝合成
負載金屬之奈米中孔碳材，其升溫程序為100至850℃每分鐘1℃，
且在最高溫度下停留3小時，其流程如圖2-8所示。表2-6為負載鉑
金屬前後之樣品名稱對照表。
表 2-6 一步自組裝合成負載金屬 Pt 之中孔碳材樣品名稱對照表。

<table>
<thead>
<tr>
<th>不規則結構一步自組裝合成負載金屬之奈米中孔碳材樣品名稱</th>
<th>規則結構一步自組裝合成負載金屬之奈米中孔碳材樣品名稱</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtSCM1-350</td>
<td>PtSCM2-350</td>
</tr>
<tr>
<td>PtSCM1-550</td>
<td>PtSCM2-550</td>
</tr>
<tr>
<td>PtSCM1-850</td>
<td>PtSCM2-850</td>
</tr>
</tbody>
</table>

2.3 樣品特性鑑定

<table>
<thead>
<tr>
<th>儀器名稱</th>
<th>機型</th>
</tr>
</thead>
<tbody>
<tr>
<td>傅立葉紅外線吸收光譜儀</td>
<td>Bruker IFS28</td>
</tr>
<tr>
<td>氮氣等溫吸附/脫附儀</td>
<td>Quantachrome Autosorb-1</td>
</tr>
<tr>
<td>粉末 X 光繞射儀</td>
<td>Philips X’Pert PRO</td>
</tr>
<tr>
<td>穿透式電子顯微鏡</td>
<td>JEOL JEM-2100</td>
</tr>
<tr>
<td>恆電位儀</td>
<td>PGSTAT30（2）</td>
</tr>
<tr>
<td>元素分析儀</td>
<td>HERAEUS Vario-III</td>
</tr>
<tr>
<td>熱重分析儀</td>
<td>Bruker TG209</td>
</tr>
<tr>
<td>感應耦合電漿質譜分析儀</td>
<td>PE-SCIEX ELAN 6100 DRC</td>
</tr>
</tbody>
</table>
2.3.1 傅立葉紅外線吸收光譜儀（FT-IR）

固體、液體及氣體可藉紅外線光譜測定混合物之組成並確認其成分之分子構造。紅外線光譜學的原理是分子中的原子產生振動和轉動模式時吸收了適當的能量而產生的光譜，為鑑定有機物官能基相當好的鑑定儀器，每一官能基都有特定的吸收譜帶，一般分子振動所吸收的能量較小，大致是紅外光區的範圍，依波數大小不同可分為三個部分：12800 ~ 4000 cm\(^{-1}\) 為遠紅外光區，4000 ~ 200 cm\(^{-1}\) 為中紅外光區，而 200 ~ 10 cm\(^{-1}\) 為近紅外光區，有機物的吸收區在一紅外光區的部分，此區提供有關分子振動的波數。分子的每一個振動皆會吸收某一定波長的紅外光，因此，同一個分子的 IR 吸收光譜具有多個波長吸收峰，而分子振動的方式大致可分為拉伸（stretching）和彎曲（bending）兩種，其中 stretching 為兩原子沿其軸向做伸縮運動，有對稱性（vs）及非對稱性振動（vas），而 bending 則是原子依兩鍵結的夾角做運動，藉由不同官能基及不同原子所產生的特定吸收峰。

2.3.2 氮氣等溫吸/脫附（N\(_2\) Adsorption/desorption Isotherm）

本實驗使用 Quantachrome Autosorb-1 volumetric adsorption
analyzer，實驗是在 77 K 下進行，量測前以 60 ℃ 抽真空至 10^{-5} torr
狀態下除水 24 hr 隨即量測樣品重量進行氣態物理吸附與脫附。本實
驗所得之數據可根據不同分析方法提供待測孔洞性材料樣品之重要
物理特性，如可利用 Kelvin equation 計算出孔洞大小的分佈，利用
BET（Brunauer-Emmett-Teller）計算方式求得比表面積與孔體積等。
本論文中所討論之孔洞大小分佈，皆以 BJH（Barrett-Joyner-Halenda）
法所得之數據為準 [106]。

樣品的孔洞大小分析是依照在特定相對壓力（P/P_0）時，氣態
的被吸附物以毛細凝結現象被吸入樣品的圓柱型孔洞之中，由相對壓
力的值帶入 Kelvin equation（式 2-1）所計算出來的 [107]：

$$R_K = (-2 \gamma V_L / RT) \times \ln (P / P_0) \quad \text{(式 2-1)}$$

其中，R_K：Kelvin 半徑；\(\gamma \)：被吸附物的液體表面張力；V_L：被吸附
物的液體莫耳體積；R：氣體常數；T：絕對溫度；P：實驗溫度下之
壓力；P_0：實驗溫度下所吸附氣體之飽和蒸氣壓。

之後，再以 BJH 的方法以及 Haley equation 計算出氮氣之吸附量，
並分析各樣品的氮氣吸附/脫附曲線，求出其孔洞大小的分布圖 [108,109]。

而所謂 t-plot 即是氣體的吸附對 t 作圖。t 的計算使用 de Boer
equation（式2-2）。氣體的吸附對 t 做圖的斜率為 s，截距為 i，
2.3.3 粉末 X 光繞射（Powdered X-Ray Diffraction；PXRD）

Philips X’Pert PRO 光譜儀是使用 Cu-Kα 放射源（λ = 0.154 nm），
2θ 範圍為 0.5° 至 90°，操作之電壓與電流值分別為 40kV 及 45mA。
在測量低角度（2θ 範圍為 0.5° 至 8°）時，將待測樣品填入鋁製樣品
槽內，以載玻片將樣品輕壓平整，掃瞄間隔（step size）為 2θ =
0.0041778，每點掃瞄時間（step time）為 0.039789 秒。若測量高角
度（2θ 範圍為 15° 至 90°）時，將待測樣品填入玻璃製樣品槽內，再
以載玻片將樣品輕壓平整，掃瞄間隔（step size）為 2θ = 0.0167113，
每點掃瞄時間（step time）為 0.257096 秒。測得粉末繞射圖譜可與粉
末繞射聯合委員會之資料庫（Joint Committee for Powder Diffraction
Files, JCPDS）相互比對，可鑑定樣品的晶型結構。

由布拉格定律（Bragg’s Law）知，將繞射角度 θ 及入射光波長 λ
帶入布拉格公式既可計算出晶格平面間距（d-spacing 如圖 2-9 所示）。

Bragg’s law：\(n\lambda = 2d \sin \theta \)

d：結晶平面間距（d-spacing）

\(\theta \)：X 光入射角度

\(\lambda \)：入射光波長

![Bragg's Law Diagram](image)

圖 2-9 XRD 利用 Bragg’s Law 示意圖。

2.3.4 穿透式電子顯微鏡（Transmission Electron Microscopy；TEM）

穿透式電子顯微鏡（TEM）與一般光學顯微鏡（Optical Microscopy；OM）在結構與原理相似，其不同在於 TEM 是以電子束為光源，而 OM 則為可見光；透鏡方面 TEM 是利用電磁透鏡而 OM 是利用光學透鏡；成像上 TEM 需利用一螢光幕或是照相底片來顯影。
（圖 2-10 示意圖）穿透式電子顯微鏡可分為四部份：（1）電子槍：
有鎢絲、LaB6、場發射三種；（2）電磁透鏡系統：聚光鏡、物鏡、
中間鏡和投影鏡；（3）試片室：可分為側面與上方置入，有變溫、
施加應力等特殊設計；（4）影像偵測與系統紀錄：ZnS/CdS 塗佈的
螢光幕或底片。樣品的製備流程首先將粉末加入丙酮中，以超音波震
盪 10 分鐘，在鍍有碳膜的銅網上滴上一滴樣品，待丙酮揮發即完成。

圖 2-10 穿透式電子顯微鏡剖面圖。
2.3.5 恆電位測試（Potential Measurement Analysis）

使用儀器為 μAutolab 之恆電位分析儀，用來測量下列兩者電位：

一、循環伏安（cyclic voltammetry; CV）法：CV 為三極恆電位儀，以工作電極和參考電極之間控制電位，工作電極產生的電流經由輔助電極流入電流分析器。可觀察電化學反應機制之速率定量分析。由此方法可得到處於電極上的活性、動力學以及速率等性質。

二、陰極觸媒氧還原（oxidation reduction）：於飽和的氧氣硫酸溶液，並在實驗過程中不斷的供給氧氣。動力曲線密度一般均符合 Koutecky-Levich first-order reaction equation （式 2-5）：

\[
\frac{1}{j} = \frac{1}{j_k} + \frac{1}{j_d} = \frac{1}{j_k} + \frac{1}{(B\omega)^{1/2}}
\]

（式 2-5）

\[
\omega = 2\pi f/60
\]

（式 2-6）

\[
B = 0.620nFD^{2/3}v^{1/6}
\]

（式 2-7）

其中，

\(j_k\) 為動力曲線密度（kinetic current density），
\(j_d\) 為擴散限制曲線密度（diffusion-limited current density），
\(\omega\) 為旋轉角頻率（式 2-6），
\(B\) 被定義為（式 2-7），
\(F\) 為法拉第常數，
\(v\) 為動力黏滯，
\(D\) 為氧氣下擴散係數，
\(n\) 為交換電子數，\(n \approx 4\) 表示全反應四電極轉換觸媒活性越佳 \[110\]。

此裝置是以標準氫電極當作參考電極，以白金片當作逆電極，將
待測之負載金屬觸媒之孔洞碳材樣品當作工作電極，利用恆電位儀在電壓為 -0.2~1.0 V 之間，掃描速度為 0.01 V/s，量測樣品在 0.1 M 硫酸溶液中量測前通入氮氣 1 小時將溶液中的氧氣去除，量測過程中也不斷的通入氮氣。使用之電極為 glassy carbon 其直徑為 5 mm，電極之製備流程首先將 5 mg 樣品加入 2.5 mL 的水中，並利用超音波震盪 30 分鐘，接著將 20 μL 的樣品溶液滴在電極上，再放置於 60 °C 的烘箱中一個小時，滴上 1% 10 μL 的 Nafion® 使其完全乾燥後進行陰極氧氣還原反應。

2.3.6 元素分析儀（Elemental Analysis；EA）

利用高溫燃燒的方式檢測 N、C、H、S、O 的含量，樣品在燃燒管 1150℃ 燃燒後，He 氣將燃燒之氣態產物經由還原管，NOX 被還原成 N₂ 直接由 He 氣帶入 TCD detector 檢測含量，吸附管依序加溫脫附 CO₂、H₂O、SO₂ 再分別進入 TCD detector 檢測個別成分含量。信號經處理後定量運算，即可自動分別列計各成分之重量百分比。（圖 2-11 所示）

氧之定量分析則利用石墨與樣品混和，在約 1100℃ 時將氧完全轉換成一氧化碳，在利用非分散性紅外線光度計（ND-IR）測定一氧化碳之濃度，換算後以測量氧重量百分比。
2.3.7 熱重分析儀（Thermogravimetry Analysis；TGA）

所使用儀器型號為 Bruker TG-209，利用升溫程序加熱測試其重量損失進而分析樣品，氣體負載可依實驗需求加以更換，樣品測試前須先做天平與背景訊號校正，樣品秤取 10 mg～15 mg 至於專用樣品槽內，設定加熱程序為室溫下加溫每分鐘上升 10℃，加熱至 850℃，於最高溫停留 10 分鐘；負載氣體氦氣及空氣，氣體流速平均流量為 90 mL / min。

2.3.8 感應耦合電漿—質譜分析（Inductively Coupled Plasma—Mass；ICPMS）

所使用儀器型號為 PE-SCIEX ELAN 6100 DRC。樣品在受測前先以微波硝化處理：以微量天平精確秤取 5 mg 的樣品置於 25 mL 的鐵氟龍瓶後，加入 2 mL 王水及 1 mL 去離子水，封入不鏽鋼壓力釜並
移置 120 ℃ 烘箱，待其溶解後，滴入 0.15 mL 40 wt% 氢氟酸。將 5 mL、0.65 M 硼酸水溶液滴入前述溶液後，以去離子水稀釋至 25 mL。
第三章 結果與討論

3.1 自組裝合成中孔碳材之鑑定

本節中主要談步合成之中孔洞奈米碳材，主要是利用有機-有機自組裝(organic-organic self-assembly)之機理，經由有機聚合物彼此間的交互作用力（氫鍵）鍵結而成之大分子聚合物，將之分別以350 °C、550 °C、850 °C在氨氣環境下進行石墨化鍛燒，有機聚合物本身即為主要碳源，依此法製備而成之碳材即稱之為自組裝合成中孔碳材。

由文獻中得知[4,13,15,47,54]，利用不同合成條件；如不同有機前驅物、介面活性劑或酸鹼 pH 值等，所合成出來的中孔洞碳材亦常會有不同的結構、孔徑大小及形態，例如（1）介面活性劑中，EO：PO 比例不同，例如：EO_{20}PO_{70}EO_{20}、EO_{106}PO_{70}EO_{106} 等，其合成出來之結構會有二維六角、三維立方（2D hexagonal、3D cubic）兩種[53]；（2）在不同 pH 值之酸鹼溶劑，pH 值控制在 9 以下會得到 3D 結構，pH 值控制在 9 以上會得到 2D 結構[3,10]；（3）個別加入不同有機前驅物，如：Resorcinol、Phenol、Phlorocinol 等，其所合成出之奈米中孔碳材則會有不同孔洞之大小[53,47,49]。
3.1.1 具不規則性結構中孔碳材(SCM1)之合成與鑑定

具不規則性結構中孔碳材(SCM1)是根據2.2.1節(圖2-1)所述的
合成步驟所製備而得的。一般而言，規則有序的中孔材料結構，可由
低角度(small angle) PXRD 圖譜判別，然而，SCM1-y (y = 350、
550、850 ℃；見表2-1) 系列中孔碳材在低角度 PXRD 圖譜中無任何
特徵峰訊號，僅是在高角度(high angle)2θ = 25°及43°處呈現石
墨的特徵峰(圖3-1)，顯示SCM1-y確實不具規則性孔道結構。而
比較高角度散射峰的峰寬得知，SCM1-850 峰寬較窄，因此該樣品比
其他二個樣品有較高的石墨化程度。此亦可由圖3-2的熱重分析
(TGA)結果獲得佐證，以空氣當導流氣體時，SCM1-850、SCM1-550
及SCM1-350被燒結的溫度亦明顯依序遞減，顯示在較高溫度進行石
墨化的SCM1-850中孔碳材確實有較好的石墨化結構。

而由氮氣等溫(77 K)吸附/脫附所量測的結果(圖3-3)，顯
示SCM1-y系列碳材樣品均呈現中孔材料常見的第IV型(Type-IV)
等溫吸附曲線，惟其在p/p0 ~ 0.7 處的H1 狀遲滯迴路(hysteresis loop)
平順而不陡峭，顯示其結構並非長程有序，且其孔洞分怖並不均勻(圖
3-4)。SCM1-y系列碳材樣品之物理特性歸納於表3-1，其BET比表
面積約在330 ~ 520 m²/g，孔體積約在0.5 ~ 0.7 cm³/g，而BJH平均孔
徑約為9 nm。
圖 3-1 不同石墨化溫度下製備的 SCM1 系列中孔碳材。

圖 3-2 不同石墨化溫度下製備的 SCM1 系列中孔碳材之 TGA 圖示。
圖 3- 3 不同石墨化溫度下製備的 SCM1 系列中孔碳材之氮氣等
（77 K）吸附/脫附曲線圖。

圖 3- 4 不同石墨化溫度下製備的 SCM1 系列中孔碳材之 BJH 孔徑
分佈圖。
圖 3- 5 SCM1s 碳材樣品之 FT-IR 圖譜。

表 3- 1 SCM1s 碳材樣品之物理性質一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350</td>
<td>328</td>
<td>9.0</td>
<td>0.49</td>
<td>3.0x10⁻⁴</td>
</tr>
<tr>
<td>SCM1-550</td>
<td>517</td>
<td>10.0</td>
<td>0.69</td>
<td>3.3x10⁻⁶</td>
</tr>
<tr>
<td>SCM1-850</td>
<td>348</td>
<td>9.0</td>
<td>0.57</td>
<td>14.6</td>
</tr>
</tbody>
</table>

SCM1s 雖為不規則孔洞結構，但仍有高比表面積與孔洞性等特質且經由傅立葉紅外線吸收光譜（FT-IR）鑑定瞭解此中孔碳材含有羧基 (−OH) 官能基，因此吾人利用此特性繼續作相關性之研究與探討，
希望對自組裝合成中孔洞碳材做更進一步瞭解並比較此新穎材料與傳統複製法所合成中孔碳材之間差異。

3.1.2 不規則孔洞碳材官能化修飾之合成與鑑定

3.1.2.1 酸處理修飾

由於大部分碳材均屬疏水性質，所以將碳材表面作官能化修飾，進而改變其表面特性，利用 H₂SO₄/HNO₃ 及 H₂O₂ 作酸化修飾，(圖 3-6 所示) 由傅立葉紅外線吸收光譜 (FT-IR) 進而分析，於 3000 ~ 3600 cm⁻¹ 振動區帶有烴基 (–OH) 特徵峰，SCM1s 碳材經由酸化修飾後其烴基特徵峰都明顯變寬，表示官能基有催化修飾鍵結到碳材上。(圖 3-7 所示) 藉由等溫吸附/脫附之量測，其 BET 之比表面積與 BJH 平均孔徑約 300 m²/g 及 10 nm，(表 3-2 所示) 而酸處理過程會將一些結構不穩定的碳材破壞且修飾之官能基鍵結於碳材表面等因素，導致比表面積、孔體積下降。經由表面修飾後之碳材與未修飾前相互比較，拿到超音波下震盪 1 小時，在於室溫下靜置 0.5 小時可觀察到，有經過酸化修飾過後之碳材，其親水性明顯增加（圖 3-8 所示）。
圖 3-6 SCMI 系列中孔碳材經不同酸化表面修飾之示意圖。
圖 3-7 經不同酸化表面修飾的 SCM1 系列中孔碳材之 FT-IR 圖譜。
表 3-2 SCM1系列中孔碳材經不同酸化表面修飾之物理性質。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350-H₂O₂</td>
<td>108</td>
<td>9.0</td>
<td>0.21</td>
<td>3.7x10⁻³</td>
</tr>
<tr>
<td>SCM1-550-H₂O₂</td>
<td>329</td>
<td>10.0</td>
<td>0.55</td>
<td>5.0x10⁻⁶</td>
</tr>
<tr>
<td>SCM1-850-H₂O₂</td>
<td>352</td>
<td>6.0</td>
<td>0.41</td>
<td>4.5</td>
</tr>
<tr>
<td>SCM1-350-H₂SO₄</td>
<td>116</td>
<td>9.0</td>
<td>0.23</td>
<td>9.8x10⁻⁶</td>
</tr>
<tr>
<td>SCM1-550-H₂SO₄</td>
<td>252</td>
<td>10.0</td>
<td>0.46</td>
<td>1.6x10⁻³</td>
</tr>
<tr>
<td>SCM1-850-H₂SO₄</td>
<td>350</td>
<td>7.0</td>
<td>0.40</td>
<td>7.7</td>
</tr>
</tbody>
</table>

圖 3-8 經不同酸化表面修飾的SCM1系列中孔碳材之親水性對照圖
(a ~ c 為未修飾；d ~ f 為 H₂O₂修飾後；g ~ i 為 H₂SO₄修飾後)。

3.1.2.2 矽烷類官能基修飾

具文獻瞭解，含氮官能基能有效提升金屬在碳材之分散性，進而提升陰極之氧氣還原活性，[75,111]所以吾人利用含氮之矽烷類官能基
做一修飾劑，將中孔碳材表面修飾含有胺官能基，且又因中孔碳材本身含有羥基（-OH），可與 Silane 形成鍵結[^71,112]更可加強與碳材之間作用力。（圖 3-9 所示）本節討論係由 2.2.2 節所述合成步驟製得中孔含氮碳材。藉由氮氣等溫 (77 K) 吸附/脫附之量測（圖 3-10 所示），SCM1s-TA 系列修飾矽烷類之樣品與 SCM1s 兩者相互比較，其比表面積、孔體積隨著矽烷類的加入而降低。（圖 3-11 所示；表 3-3 所示）利用元素分析儀（EA）測量得知平均含氨量約 4 wt%（表 3-3 所示）。利用傅立葉紅外線吸收光譜儀（FT-IR）進而分析，於 750 cm⁻¹、1080 cm⁻¹、3400 cm⁻¹ 可觀察到 v-NH 之振動區帶，進一步證實，矽烷類與中孔碳材結合。（圖 3-12 所示）將 SCM1s 與 SCM1s-TA 拿到超音波下震盪 1 小時，在室溫下靜置 0.5 小時可觀察到，有經過矽烷類修飾過後的碳材，其親水性明顯增加。（圖 3-13：a-c 屬 SCM1s，d-f 屬 SCM1s-TA）

![Mesoporous Carbon material](image1)

圖 3-9 SCM1 系列中孔碳材經表面胺基官能化修飾前後之示意圖。
圖 3-10 表面胺基官能化修飾 SCM1 系列中孔炭材之氮氣等溫（77 K）吸附/脫附曲線圖。

圖 3-11 表面胺基官能化修飾 SCM1 系列中孔炭材之 BJH 孔徑分布圖。
表 3-3 SCM1 系列中孔碳材經表面胺基官能化修飾前後之物理性質。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>N group (wt%)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350-TA</td>
<td>14</td>
<td>5.0</td>
<td>0.05</td>
<td>3.9</td>
<td>1.8x10⁻⁷</td>
</tr>
<tr>
<td>SCM1-550-TA</td>
<td>78</td>
<td>7.0</td>
<td>0.16</td>
<td>2.4</td>
<td>6.6x10⁻⁵</td>
</tr>
<tr>
<td>SCM1-850-TA</td>
<td>52</td>
<td>6.0</td>
<td>0.13</td>
<td>4.7</td>
<td>9.8</td>
</tr>
</tbody>
</table>
圖 3-13 表面胺基官能化修飾 SCMI 系列中孔碳材之親水性對照圖（a~c 為未修飾；d~f 為修飾後）。

碳材表面做官能化修飾，希望其能改變碳材表面特性，進而做更多應用，亦期望其能夠增加碳材負載金屬後之表面分散性，提升其應用於燃料電池電極材料使用之活性，因而降低貴重金屬負載量，降低材料製備價格，因而對 SCMI 為進一步研究探討。

3.1.3 不規則孔洞碳材負載金屬之合成與鑑定

本節中所討論之負載 Pt 金屬中孔碳材（Pt-SCMI）樣品，皆係根據 2.2.1 節所述之有機-有機自組裝合成再經由 2.2.4 節所述化學還原法所製備而來，SCMI 之負載 Pt 金屬經由高角度 XRD 繞射峰位置（2θ）及半高寬（β_{1/2}）利用 Scherrer formula \(d = k \lambda / \beta_{1/2} \cos \theta \)；k ~ 1，銅靶 X 光波長 \(\lambda = 1.54 \text{Å} \) 推算得出，結果顯示 Pt-SCMI 未表面修飾樣品中的 Pt 頗粒大小均介於 5 nm，（圖 3-14 ~ 圖 3-16 所示）再以 Pt-SCMI 與 P-SCMI-TA 做比較則發現 SCMI 經修飾含氮之
砂烷類再負載 Pt 金屬，其高角度 XRD 圖譜以 $2\theta = 39.8^\circ$ 為例，半高
寬較沒修飾前稍微變寬，經 Scherrer formula 推算後，Pt 顆粒大小介
於 3～4 nm。由穿隧式電子顯微鏡（TEM）所拍攝圖可獲知，其所負
載之 Pt 金屬平均粒徑約為 3～5 nm，且其 Pt 金屬顆粒分散性相當均
勻，（圖 3-17 至圖 3-20 所示）且比較利用酸處理方式修飾之碳材其
負載 Pt 金屬後，碳材修飾 H$_2$O$_2$ 其金屬分散性較修飾 H$_2$SO$_4$/HNO$_3$ 佳，
與文獻所提及相符合113，推測可能 H$_2$SO$_4$/HNO$_3$ 其酸性強度太強導
致 Pt 金屬會有聚集現象，不易分散於碳材上，且修飾含氯之砂烷類
之碳材負載金屬後，其分散性亦大為提升，亦如文獻所提及114氯之
官能基有增強 Pt 金屬間之作用力，使 Pt 金屬間不易聚集，此結果更
佐證高角度 XRD 圖譜上，半高寬較沒修飾前稍微變寬，經 Scherrer
formula 推算後相符合。由氯吸附/脫附量測（BET）之比表面積下
降表示金屬佔據了碳材表面及孔洞中（表 3-4 所示）。
圖 3-14 Pt-SCM1s-TA 碳材樣品之高角度 XRD 圖譜。

圖 3-15 Pt-SCM1s-H₂O₂ 碳材樣品之高角度 XRD 圖譜。

圖 3-16 Pt-SCM1s-H₂SO₄ 碳材樣品之高角度 XRD 圖譜。
<table>
<thead>
<tr>
<th>Sample</th>
<th>Pt loading (wt%)</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore Volume (cm³/g)</th>
<th>*Pt particle size (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM1-350</td>
<td>0</td>
<td>328</td>
<td>9.0</td>
<td>0.49</td>
<td>---</td>
</tr>
<tr>
<td>SCM1-550</td>
<td>0</td>
<td>517</td>
<td>10.0</td>
<td>0.69</td>
<td>---</td>
</tr>
<tr>
<td>SCM1-850</td>
<td>0</td>
<td>348</td>
<td>9.0</td>
<td>0.57</td>
<td>---</td>
</tr>
<tr>
<td>Pt-SCM1-350</td>
<td>5.6</td>
<td>164</td>
<td>8.0</td>
<td>0.34</td>
<td>4</td>
</tr>
<tr>
<td>Pt-SCM1-550</td>
<td>13.1</td>
<td>370</td>
<td>8.0</td>
<td>0.43</td>
<td>4</td>
</tr>
<tr>
<td>Pt-SCM1-850</td>
<td>12.0</td>
<td>206</td>
<td>7.0</td>
<td>0.34</td>
<td>5</td>
</tr>
<tr>
<td>Pt-SCM1-350-H₂O₂</td>
<td>16.9</td>
<td>40</td>
<td>8.0</td>
<td>0.09</td>
<td>4</td>
</tr>
<tr>
<td>Pt-SCM1-550-H₂O₂</td>
<td>19.8</td>
<td>277</td>
<td>10.0</td>
<td>0.41</td>
<td>4</td>
</tr>
<tr>
<td>Pt-SCM1-850-H₂O₂</td>
<td>15.1</td>
<td>387</td>
<td>6.0</td>
<td>0.43</td>
<td>5</td>
</tr>
<tr>
<td>Pt-SCM1-350-H₂SO₄</td>
<td>20.0</td>
<td>2</td>
<td>0</td>
<td>0.04</td>
<td>7</td>
</tr>
<tr>
<td>Pt-SCM1-550-H₂SO₄</td>
<td>16.9</td>
<td>191</td>
<td>10.0</td>
<td>0.34</td>
<td>8</td>
</tr>
<tr>
<td>Pt-SCM1-850-H₂SO₄</td>
<td>19.9</td>
<td>210</td>
<td>9.0</td>
<td>0.37</td>
<td>10</td>
</tr>
<tr>
<td>Pt-SCM1-350-TA</td>
<td>11.2</td>
<td>14</td>
<td>5.0</td>
<td>0.05</td>
<td>3</td>
</tr>
<tr>
<td>Pt-SCM1-550-TA</td>
<td>10.4</td>
<td>78</td>
<td>7.0</td>
<td>0.16</td>
<td>3</td>
</tr>
<tr>
<td>Pt-SCM1-850-TA</td>
<td>12.0</td>
<td>52</td>
<td>6.0</td>
<td>0.13</td>
<td>3</td>
</tr>
</tbody>
</table>

*Scherrer formula: \(d = \frac{k \lambda}{\beta 2 \theta / \cos \theta}\); \(k=0.9, \lambda\) 为 X 光波长，

\(\beta\) 为半高宽。
圖 3-17 Pt-SCM1s 碳材樣品之 TEM 圖。
圖 3-18 Pt-SCM1s-TA 碳材樣品之 TEM 圖。
圖 3-19 Pt-SCM1s-HSO₄ 碳材樣品之 TEM 圖。
圖 3-20 Pt-SCM1s-H₂O₂ 碳材樣品之 TEM 圖。

77
3.1.4 自組裝合成不規則孔洞碳材負載金屬之氧化還原反應

為測試 Pt-SCM1s 系列金屬負載之氧化還原反應效能，吾人以循環伏安（Cyclic Voltammetry；CV）檢測其催化活性。所使用之電極為 glassy carbon，其直徑為 5 mm，電極之製備流程如下：首先將 5 mg 樣品加入 2.5 mL 的水中，並利用超音波震盪 30 分鐘，接著將 20 μL 的樣品溶液滴在電極上，再放置於 60 ℃ 的烘箱中一個小時，滴上 1% 10 μL 的 Nafion 使其完全乾燥後進行陰極氧氣還原反應。進行循環伏安測量時，首先以以氯氣通過 0.1 M 的硫酸 H₂SO₄ (aq)，直至溶液中氣體達飽和，隨後先進行十次的循環量測，其主要目的在於去除鉑 (Pt) 金屬表面之雜質和鹽類。下一個步驟則是將 0.1 M 硫酸 H₂SO₄ (aq) 通氣氧使溶液保持飽和狀態，同時將電極旋轉 1600 rpm 進行氧氣還原反應，從高電壓量到負電壓，共累計二十次的循環伏安測量。

3.1.4.1 不規則孔洞碳材負載金屬之氧化還原反應效能

吾人將 Pt-SCM1s 系列碳材測試氧氣還原反應效能得知，在圖 3-21 至圖 3-23，碳材在不同石墨化溫度其效能不一樣，因越高溫碳材石墨化效能不能，導電性越差，所以石墨化程度與氧氣還原反應效能是有相關性。而經含氮砂烷類修飾之碳材（Pt-SCM1s-TA），在三個石墨化溫度下，其效能都不盡理想，吾人推測雖然含氮官能基可提升
與 Pt 金屬之間分散力使 Pt 較不易聚集，但烷類化合物之官能基
-SiOH 會自組成 (Si-O-Si)n 的硅化合物，導致碳材上覆蓋一層硅化
物，即使負載 Pt 金屬，仍會影響其導電性，造成其效能變差。SCMs
經過酸處理進行官能化修飾再負載 Pt 金屬（Pt-SCMs-H₂O₂、
Pt-SCMs-H₂SO₄），其在氧氣還原反應中，其效能以 H₂O₂ 較為
H₂SO₄/HNO₃ 處理過來的佳，不只是增加了親水性，亦增加 Pt 金屬顆
粒於碳材中之分散性。吾人推測 H₂SO₄/HNO₃ 其為較強酸，會破壞碳
材本身之結構，由 TEM 圖亦可瞭解經 H₂SO₄/HNO₃ 修飾之碳材負載
金屬後，其碳材孔洞性質較原碳材差，比表面積亦是 (表 3-2 所示)，
且 Pt 金屬受到碳材修飾後表面酸化，可能導致金屬相互聚集，由 TEM
圖亦可瞭解，經 H₂SO₄/HNO₃ 修飾其金屬顆粒都會相互聚集，亦符合
文獻上之理論[113]。但以修飾碳材而言，其親水性極差，若應用於燃
料電池陰極電極上會有三相共存之問題，所以碳材經 H₂O₂ 修飾再負
載 Pt 金屬，不只效能好，亦有解決碳材疏水之特性。由此實驗吾人
更加瞭解中孔洞碳材修飾之一些概念。
圖 3-21
Pt-SCM1-350 碳材樣品之循環伏安(CV)圖

圖 3-22
Pt-SCM1-550 碳材樣品之循環伏安(CV)圖
3.1.4.2 不規則孔洞碳材負載金屬在不同轉速下之氧化還原反應

利用2.3.5小節所述方式，分別對各Pt-SCM1s系列碳材做不同轉速下之氧化還原反應效能的測試，吾人改變七個轉速，可發現電極轉速越快其電流越高，反之轉數越慢則越低，再以式2-5～式2-7分別求出n值，n為交換電子數，n≡4表示全反應四電極轉換之觸媒活性越佳（圖3-24至圖3-35；表3-5所示）。
圖 3-24 Pt-SCM1-350 碳筏樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (-j) 對 $\omega^{-1/2}$ 關係圖；ω 為旋轉角頻率。
圖 3-25 Pt-SCM1-550 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 \((-j)\) 對 \(\omega^{-1/2}\) 關係圖；\(\omega\) 為旋轉角頻率。
Pt-SCM1-850

E/V vs Ag/AgCl

I/A

-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-0.002 -0.001 0.000

400 rpm
800 rpm
1200 rpm
1600 rpm
2000 rpm
2500 rpm
3000 rpm

y = 1.8633x - 0.0145
y = 1.9559x - 0.0143
y = 2.0408x - 0.0105

0.00E+00 2.00E-01 4.00E-01
0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0V 0.1V 0.2V

-1/2 rad 1/2 S

-\frac{J}{mA \cdot cm^2}

\omega^{-1/2} \text{rad}^{-1/2} \text{S}^{1/2}

圈 3-26 Pt-SCM1-850 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (-j) 對 $\omega^{-1/2}$ 關係圖；ω 為旋轉角頻率。
Pt-SCM1-350-TA

-0.0002
-0.0001
0.0000
I/A

E/V vs Ag/AgCl

400 rpm
800 rpm
1200 rpm
1600 rpm
2000 rpm
2500 rpm
3000 rpm

y = 5.1798x + 0.4951
y = 5.3106x + 0.5241
y = 5.3744x + 0.6055

-1/2 rad
1/2 S
1/2
-J/mA-1cm2

Pt-SCM1-350-TA

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18
0V
0.1V
0.2V

0.00E+00
1.00E+00
2.00E+00
{-J/mA-1cm2}

\[\omega^{-1/2} \]

\[\text{rad}^{-1/2} \text{S}^{1/2} \]

圖 3-27 Pt-SCM1-350-TA 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(\(\omega^{-1/2}\))對\(\omega^{-1/2}\)關係圖；\(\omega\)為旋轉角頻率。
圖 3-28 Pt-SCM1-550-TA 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (j) 對 ω^{-1/2} 關係圖；ω 為旋轉角頻率。

Pt-SCM1-550-TA

\[y = 4.0654x + 0.9818 \]
\[y = 3.9722x + 1.0887 \]
\[y = 3.8386x + 1.3092 \]
圖 3-29 Pt-SCM1-850-TA 碳材樣品之(a) 不同轉速下之 CV 圖，(b)電流密度(-j)對 ω^{−1/2} 關係圖；ω 為旋轉角頻率。
圖 3-30 Pt-SCM1-350-H₂O₂ 碳材料樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (j) 對 ω⁻¹/² 關係圖；ω 為旋轉角頻率。
圖 3-31 Pt-SCM1-550-H₂O₂碳材樣品之(a)不同轉速下之CV圖與(b)電流密度(-j)對ω⁻¹/₂關係圖；ω為旋轉角頻率。
Pt-SCM1-850-H₂O₂

I/A vs. E/V vs Ag/AgCl

400 rpm
800 rpm
1200 rpm
1600 rpm
2000 rpm
2500 rpm
3000 rpm

y = 1.9753x + 0.0661
y = 1.9949x + 0.0728
y = 1.8992x + 0.0943

0V
0.1V
0.2V

-1/2 rad
1/2 S
J/mA·cm²

ω⁻1/2 rad⁻1/2 S⁻1/2

圖 3-32 Pt-SCM1-850-H₂O₂ 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (J) 對 ω⁻¹/₂ 關係圖；ω 為旋轉角頻率。
圖 3-33 Pt-SCM1-350-H₂SO₄ 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (-j) 對 ω⁻¹/₂ 關係圖；ω 為旋轉角頻率。
圖 3- 34 Pt-SCM1-550-H₂SO₄ 碳材樣品之(a) 不同轉速下之 CV 圖，
(b) 電流密度(-j)對ω⁻¹/２關係圖：ω為旋轉角頻率。
圖 3-35
Pt-SCM1-850-H₂SO₄碳材樣品之 (a) 不同轉速下之 CV 圖，

(b) 電流密度 (-j) 對 ω⁻¹/₂ 關係圖；ω 為旋轉角頻率。
表 3-5 各陰電極觸媒在氧氣還原反應交換電子傳遞數一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>N 值</th>
<th>Sample</th>
<th>N 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-SCM1-350</td>
<td>1.59</td>
<td>Pt-SCM1-350-H₂SO₄</td>
<td>1.89</td>
</tr>
<tr>
<td>Pt-SCM1-550</td>
<td>1.66</td>
<td>Pt-SCM1-550-H₂SO₄</td>
<td>1.23</td>
</tr>
<tr>
<td>Pt-SCM1-850</td>
<td>4.26</td>
<td>Pt-SCM1-850-H₂SO₄</td>
<td>3.92</td>
</tr>
<tr>
<td>Pt-SCM1-350-H₂O₂</td>
<td>1.59</td>
<td>Pt-SCM1-350-TA</td>
<td>1.62</td>
</tr>
<tr>
<td>Pt-SCM1-550-H₂O₂</td>
<td>2.57</td>
<td>Pt-SCM1-550-TA</td>
<td>2.27</td>
</tr>
<tr>
<td>Pt-SCM1-850-H₂O₂</td>
<td>4.58</td>
<td>Pt-SCM1-850-TA</td>
<td>2.51</td>
</tr>
</tbody>
</table>

3.2 規則孔洞合成不規則奈米結構碳材之合成與鑑定

3.2.1 規則孔洞碳材之合成與鑑定

所合成出之奈米中孔洞碳材樣品之結構分析利用粉末 X 光繞射儀（Powder X-ray Detector）鑑定，可由低角度（Small Angel）XRD 圖譜瞭解個碳材樣品結構，亦可由高角度（High Angel）XRD 瞭解碳材石墨化程度，在 SCM2 系列之樣品中，在低角度 XRD 圖譜 2θ = 0.78° 有繞射特徵峰訊號，其代表(100)之晶格方向，(圖 3-36 所示) 且發現隨溫度上升特徵峰會往高角度方向位移現象，因為隨溫度越高碳材結構越緊縮導致孔洞縮小，或不穩定結構因高溫而遭破壞等影響造成，而在高角 25°、43° 皆具有石墨程度特徵峰，可比較 350℃、
550℃、850℃三個溫度石墨化程度。（圖 3- 37 所示）由熱重分析儀（TGA）亦可了解佐證其愈高溫碳化程度越好。（圖 3- 38 所示）藉由等溫吸附/脫附之量測（圖 3- 39 所示），SCM2s 樣品呈現具有特徵 H1 狀態遲滯迴路（hysteresis loop；p/p₀ ~ 0.7）之第 IV 型（Type-IV）等溫吸附曲線。經詳細分析，其 BET 表面積與 BJH 平均孔徑約 500 m²/g 及 6 nm。（圖 3- 40；表 3- 6 所示）經由傅立葉紅外線吸收光譜（FT-IR）進而分析瞭解，SCM2s 中孔洞碳材於 3000 ~ 3600 cm⁻¹ 振動區帶有羥基（-OH）特徵峰，（圖 3- 41 所示）因為有機-有機自組裝合成的中孔碳材是利用帶有羥基（-OH）與苯基（-C₆H₅）之化合物當有機碳源，其合成過程中不僅會利用分子間作用力（氫鍵）相互作用外，且仍保留羥基（-OH），可利用此特性作更多之應用與探討。由穿隧式電子顯微鏡（TEM）可佐證其為規則孔洞之結構。（圖 3- 42 所示）
圖 3-36 SCM2s 碳材樣品不同溫度石墨化程度之低角度 XRD 圖譜。

圖 3-37 SCM2s 碳材樣品不同溫度石墨化程度之高角度 XRD 圖譜。
圖 3- 38 SCM2s 碳材樣品不同溫度下質量損失之 TGA 圖示。

圖 3- 39 SCM1s 碳材樣品之氫氣等溫（77K）吸附/脫附曲線圖。
圖 3-40 SCM1s 碳材料樣品之 BJH 孔徑分佈圖。

圖 3-41 SCM2s 碳材樣品之 FT-IR 圖譜。
<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM2-350</td>
<td>462</td>
<td>6.0</td>
<td>0.59</td>
<td>3.4x10⁻³</td>
</tr>
<tr>
<td>SCM2-550</td>
<td>661</td>
<td>5.0</td>
<td>0.71</td>
<td>2.6x10⁻⁴</td>
</tr>
<tr>
<td>SCM2-850</td>
<td>525</td>
<td>5.0</td>
<td>0.47</td>
<td>9.4</td>
</tr>
</tbody>
</table>
圖 3-42 SCM2s 碳材料之 TEM 圖。
3.2.2 規則孔洞碳材官能化修飾之合成與鑑定

3.2.2.1 酸化修飾

由於大部分碳材均屬疏水性質，所以將碳材表面作官能化修飾，進而改變其表面特性，利用 H₂SO₄/HNO₃ 及 H₂O₂ 作酸化修飾，由傅立葉紅外線吸收光譜（FT-IR）進而分析，於 3000 ~ 3600 cm⁻¹ 振動區域帶有一羧基特徵峰，SCM2s 碳材經由酸化修飾其羧基特徵峰都明顯變寬，表示酸有修飾鍵結到碳材上。（圖 3- 44 所示）藉由等溫吸附/脫附之量測，其 BET 之比表面積與 BJH 平均孔徑約 350 ~ 400 m²/g 及 6 nm，（表 3- 7 所示）而酸化過程會將一些結構不穩定之碳材破壞且修飾之官能基鍵結於碳材表面等因素，導致比表面積下降。表面修飾後的碳材與未修飾前相互比較，拿到超音波下震盪 1 小時，於室溫下靜置 0.5 小時可觀察到，有經過砂堿類修飾過後的碳材，其親水性明顯增加。其親水性明顯增加（圖 3-42 所示；a ~ c SCM2s，d ~ f SCM2s-H₂O₂，g ~ i SCM2s-H₂SO₄）。
圖 3-43 SCM2s 酸處理碳材樣品親水性對照圖（a～c 為未修飾；d～f 為 H₂O₂修飾後；g～i 為 H₂SO₄修飾後）。

圖 3-44 SCM1s 碳材樣品酸處理官能化修飾之 FT-IR 圖譜。
表 3-7 SCM2s 酸處理官能化修飾之物理性質一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM2-350-H₂O₂</td>
<td>371</td>
<td>8.0</td>
<td>0.55</td>
<td>1.8x10⁻⁸</td>
</tr>
<tr>
<td>SCM2-550-H₂O₂</td>
<td>389</td>
<td>6.0</td>
<td>0.41</td>
<td>3.6x10⁻⁶</td>
</tr>
<tr>
<td>SCM2-850-H₂O₂</td>
<td>380</td>
<td>6.0</td>
<td>0.44</td>
<td>6.7</td>
</tr>
<tr>
<td>SCM2-350-H₂SO₄</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>1.4x10⁻⁵</td>
</tr>
<tr>
<td>SCM2-550-H₂SO₄</td>
<td>249</td>
<td>6.0</td>
<td>0.31</td>
<td>5.9x10⁻⁴</td>
</tr>
<tr>
<td>SCM2-850-H₂SO₄</td>
<td>244</td>
<td>8.0</td>
<td>0.42</td>
<td>9.5</td>
</tr>
</tbody>
</table>

3.2.2.2 砷烷類官能基修飾

由於含氫官能基能有效提升金屬在碳材之分散性，進而提升陰極之氧化還原活性，所以吾人利用含氫之砷烷類官能基做一修飾劑，將中孔碳材表面修飾含有氫官能基，且又因中孔碳材本身含有羟基（-OH），可與 Silane 形成鍵結[114]而可加強與碳材之間作用力。（圖 3-9 所示）本節討論係由 2.2.2 節所述合成步驟製得中孔含氫碳材。藉由氮氣等溫(77 K)吸附/脫附之量測（圖 3-所示），SCM2s-TA 系列修飾砷烷類之樣品其比表面積、孔體積隨著砷烷類的加入而降低。（表所示）利用元素分析儀（EA）測量得知平均含氨量約 4 wt%（表 3-3 所示）。利用傅立葉紅外線吸收光譜儀（FT-IR）進而分析，於 750 cm⁻¹、
1080 cm\(^{-1}\)、3400 cm\(^{-1}\)可觀察到\(\nu\)-NH 之振動區帶，進一步證實，矽烷類與中孔碳材結合。（圖 3-45 所示）

![FT-IR spectra](image)

圖 3-45 SCM2s 碳材樣品利用矽烷類官能化修飾之 FT-IR 圖譜。

表 3-8 SCM2s 碳材樣品利用矽烷類官能化修飾之物理性質一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Surface area (m(^2)/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm(^3)/g)</th>
<th>N group (wt%)</th>
<th>Conductivity (S/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCM2-350-TA</td>
<td>47</td>
<td>5.0</td>
<td>0.06</td>
<td>3.4</td>
<td>6.0x10(^{-6})</td>
</tr>
<tr>
<td>SCM2-550-TA</td>
<td>155</td>
<td>3.0~5.0</td>
<td>0.17</td>
<td>3.6</td>
<td>8.1x10(^{-4})</td>
</tr>
<tr>
<td>SCM2-850-TA</td>
<td>22</td>
<td>3.5</td>
<td>0.02</td>
<td>3.6</td>
<td>8.7</td>
</tr>
</tbody>
</table>
3.2.3 規則孔洞碳材負載金屬之合成與鑑定

本節中所討論之負載 Pt 金屬中孔碳材（Pt-SCM2s）樣品，皆係
根據 2.2.1 節所述之有機-有機自組裝合成再經由 2.2.4 節所述化學還
原法所製備而來，低角度 XRD 繞射峰於（100）位置隨著表面修飾
及負載金屬而變小，表示其結構受到修飾化合物與金屬佔據而逐漸變
小，（圖 3- 46 所示）SCM2s 負載 Pt 金屬經由高角度 XRD 繞射峰位
置（2θ）及半高寬（β1/2）利用 Scherrer formula（d = kλ/β1/2cosθ；k ~
1，銅靶 X 光波長λ = 1.54Å）推算得出，結果顯示 Pt-SCM2s 未表面
修飾樣品中的 Pt 顆粒大小均介於 5 nm，（圖 3- 47 所示）再以同溫度
之 Pt-SCM2s 相互做比較則發現 SCM2s 系列經修飾含氮之矽烷類再
負載 Pt 金屬，其高角度 XRD 圖譜以 2θ = 39.8°為例，半高寬較沒修
飾前稍微變寬，經 Scherrer formula 推算後，Pt 顆粒大小介於 3 ~ 4
nm。由穿隧式電子顯微鏡（TEM）所拍攝圖可獲知，其所負載之 Pt
金屬平均粒徑約為 3 ~ 5 nm，且其 Pt 金屬顆粒分散性相當均勻，（圖
3- 48 ~ 圖 3- 51 所示）且比較利用酸處理方式修飾之碳材其負載 Pt
金屬後，碳材修飾 H2O2 其金屬分散性較修飾 H2SO4/HNO3 佳，與文
獻所提及相符合[113]，可能硫酸/硝酸其酸性強度太強導致 Pt 金屬會有
聚集現象，不易分散於碳材上，且修飾含氮之矽烷類之碳材負載金屬
後，其分散性亦大為提升，亦如文獻所提及[75,114] 氮之官能基有增強 Pt 金屬間之作用力，使 Pt 金屬間不易聚集，此結果更佐證高角度 XRD 圖譜上，半高寬較沒修飾前稍微變寬，經 Scherrer formula 推算後相符合。由氮氣吸附/脫附量測（BET）之比表面積下降表示金屬佔據了碳材表面及孔洞中 (表 3-9 所示)。
圖 3-46 Pt-SCM2S 碳材樣品之低角度 XRD 圖譜。
圖 3-47 Pt-SCM2S 碳材樣品之高角度 XRD 圖譜。
表 3-9 SCM2s 碳材樣品之物理性質一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pt loading (wt%)</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
<th>*Pt particle size(nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-SCM2-350</td>
<td>9.8</td>
<td>297</td>
<td>7.0</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Pt-SCM2-550</td>
<td>10.8</td>
<td>499</td>
<td>6.0</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Pt-SCM2-850</td>
<td>8.7</td>
<td>407</td>
<td>5.0</td>
<td>0.37</td>
<td>5</td>
</tr>
<tr>
<td>Pt-SCM2-350-H₂O₂</td>
<td>12.9</td>
<td>304</td>
<td>7.0</td>
<td>0.41</td>
<td>2</td>
</tr>
<tr>
<td>Pt-SCM2-550-H₂O₂</td>
<td>7.9</td>
<td>317</td>
<td>6.0</td>
<td>0.36</td>
<td>2</td>
</tr>
<tr>
<td>Pt-SCM2-850-H₂O₂</td>
<td>7.6</td>
<td>351</td>
<td>6.0</td>
<td>0.42</td>
<td>2</td>
</tr>
<tr>
<td>Pt-SCM2-350-H₂SO₄</td>
<td>13.8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Pt-SCM2-550-H₂SO₄</td>
<td>18.1</td>
<td>206</td>
<td>7.0</td>
<td>0.27</td>
<td>6</td>
</tr>
<tr>
<td>Pt-SCM2-850-H₂SO₄</td>
<td>21.3</td>
<td>211</td>
<td>8.0</td>
<td>0.38</td>
<td>7</td>
</tr>
<tr>
<td>Pt-SCM2-350-TA</td>
<td>16.5</td>
<td>17</td>
<td>3</td>
<td>0.03</td>
<td>2</td>
</tr>
<tr>
<td>Pt-SCM2-550-TA</td>
<td>10.5</td>
<td>169</td>
<td>4</td>
<td>0.17</td>
<td>2</td>
</tr>
<tr>
<td>Pt-SCM2-850-TA</td>
<td>12.0</td>
<td>39</td>
<td>5</td>
<td>0.06</td>
<td>2</td>
</tr>
</tbody>
</table>

*Scherrer formula：(d = k λ / β 2θ /2cosθ；k=0.9，λ 為 X 光波長，
β 為半高寬)
圖 3-48 Pt-SCM2s 碳材樣品之 TEM 圖。
圖 3-49 Pt-SCM2s-TA 碳材料之 TEM 圖。
圖 3-50 Pt-SCM2s-H_{2}O_{2} 碳材樣品之 TEM 圖。
圖 3- 51 Pt-SCM2s-H₂O₂ 碳材樣品之 TEM 圖。
3.2.4 規則孔洞碳材負載金屬之氧化還原反應

為測試 Pt-SCM2s 系列金屬負載之氧化還原反應效能，吾人以循環伏安（Cyclic Voltammetry；CV）檢測其催化活性。所使用之電極為 Glassy Carbon，其直徑為 5 mm，電極之製備流程如下: 首先將 5 mg 槽品加入 2.5 mL 的水中，並利用超音波震盪 30 分鐘，接著將 20 μL 的樣品溶液滴在電極上，再放置於 60 ℃ 的烘箱中一個小時，滴上 1% 10 μL 的 Nafion 使其完全乾燥後進行陰極氧化還原反應。進行循環伏安測量時，首先以氫氣通過 0.1 M 的硫酸 H₂SO₄ (aq)，直至溶液中氣體達飽和，隨後先進行十次的循環伏安，其主要目的在於去除鉑(Pt)金屬表面之雜質和鹽類。下一個步驟則是將 0.1 M 硫酸 H₂SO₄ (aq) 通氧氣使溶液保持飽和狀態，同時將電極旋轉 1600 rpm 進行氧化還原反應，從高電壓量到負電壓，共累計二十次的循環伏安測量。

3.2.4.1 不規則孔洞碳材負載金屬之氧化還原反應

吾人將 Pt-SCM2s 系列碳材測試氧氣還原反應效能得知，在圖 3-52 至圖 3-54，碳材在不同石墨化溫度其效能不一樣，因越高温碳材石墨化效能越好，導電性越佳，所以石墨化程度與氧氣還原反應效能是有相關性。而經含氮碳化物修飾之碳材（Pt-SCM2s-TA），在三個石墨化溫度下，其效能都不甚理想，吾人推測雖然含氮官能基可提升
與 Pt 金屬之間分散力使 Pt 較不易聚集，但砂烷類化合物之官能基
-SiOH 會自組成 (Si-O-Si) n 的砂化合物，導致碳材上覆蓋一層砂化
物，即使負載 Pt 金屬，仍會影響其導電性，造成其效能變差。SCM2s
經過酸處理進行官能化修飾再負載 Pt 金屬 (Pt-SCM2s-H2O2、
Pt-SCM2s-H2SO4)，其在氧氣還原反應中，其效能以 H2O2 較為
H2SO4/HNO3 處理過的佳，不只是增加了親水性，亦增加 Pt 金屬顆
粒於碳材中之分散性。吾人推測 H2SO4/HNO3 其為較強酸，會破壞碳
材本身之結構，由低角度 XRD 亦可佐證其結構已被破壞跡象。TEM
圖亦可瞭解經 H2SO4/HNO3 修飾之碳材負載金屬後，其碳材孔洞性質
較原碳材差，比表面積亦是 (表 3-7 所示)，且 Pt 金屬受到碳材修飾
後表面酸化，可能導致金屬相互聚集，由 TEM 亦可瞭解，經
H2SO4/HNO3 修飾其金屬顆粒都會相互聚集，亦符合文獻上之理論。

[113] 但以為修飾碳材而言，其親水性極差，若應用於燃料電池陰極電
極上會有三相共存之問題，所以碳材經 H2O2 修飾再負載 Pt 金屬，不
只效能好，亦有解決碳材疏水之特性。由此實驗吾人更加瞭解中孔洞
碳材修飾之一些概念。
圖 3-52 Pt-SCM2s-350 貫碳材料之循環伏安(CV)圖。

圖 3-53 Pt-SCM1s-550 貫碳材料之循環伏安(CV)圖。
3.2.4.2 不規則孔洞碳材負載金屬在不同轉速下之氧化還原反應

利用 2.3.5 小節所述方式，分別對各 Pt-SCM2s 系列碳材做不同轉速下之氧化還原反應效能的測試，吾人改動七個轉速，可發現電極轉速越快其電流越高，反之轉速越慢則越低，再以式 2-5 ~ 式 2-7 分別求出 n 值，n 為交換電子數，n=4 表示全反應四電極轉換之觸媒活性越佳（圖 3-55 至圖 3-66；表 3-10 所示）。
圖 3-55 Pt-SCM2-350 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (-j) 對 \(\omega^{-1/2} \) 關係圖；\(\omega \) 為旋轉角頻率。
圖 3- 56 Pt-SCM2-550 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (-j) 對 $\omega^{-1/2}$ 關係圖；ω 為旋轉角頻率。
圖 3- 57 Pt-SCM2-850 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對ω⁻¹/₂關係圖；ω為旋轉角頻率。
圖 3-58 Pt-SCM2-350-TA 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對ω⁻¹² 關係圖；ω為旋轉角頻率。
圖 3- 59 Pt-SCM2-550-TA 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對 $\omega^{-1/2}$ 關係圖；ω 為旋轉角頻率。
Pt-SCM2-850-TA

$E/V \text{ vs } Ag/AgCl$

400 rpm
800 rpm
1200 rpm
1600 rpm
2000 rpm
2500 rpm
3000 rpm

$Pt-SCM2-850-TA$

$y = 2.02x + 0.0216$

$y = 2.0394x + 0.0386$

$y = 2.0153x + 0.0723$

$\omega^{-1/2} \rho \omega^{1/2} \dot{S}^{1/2}$

0.00E+00
3.00E-01
6.00E-01

0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

圖 3-60 Pt-SCM2-850-TA 碳材樣品之 (a) 不同轉速下之 CV 圖，(b) 電流密度 (-j) 對 $\omega^{-1/2}$ 關係圖；ω 為旋轉角頻率。
圖 3-61
(Pt-SCM2-350-H₂O₂) 碳材樣品之(a) 不同轉速下之 CV 圖，(b) 電流密度(-j)對 ω⁻¹/² 關係圖；ω 為旋轉角頻率。
Pt-SCM2-550-H$_2$O$_2$

![Graph](image)

- $y = 3.5861x + 0.0021$
- $y = 3.5956x + 0.0074$
- $y = 3.5711x + 0.0205$

图 3-62 Pt-SCM2-550-H$_2$O$_2$ 碳电极样品之(a) 不同转速下之 CV 图，(b) 电流密度($-j$)对$\omega^{-1/2}$ 与角$\omega^{-1/2}$ 之关系图：ω 为旋转角频率。
圖 3-63 Pt-SCM2-850-H₂O₂ 複合膜樣品不同轉速下之 CV 圖

(a) 0V 線性 (0V) \(y = 2.0583x - 0.0136 \)

(b) 0.1V 線性 (0.1V) \(y = 2.1025x - 0.0117 \)

電流密度 (-j) 對 \(\omega^{-1/2} \) 關係圖；\(\omega \) 為旋轉角頻率。

126
圖 3-64
Pt-SCM2-350-H₂SO₄碳材樣品之(a) 不同轉速下之CV圖，
(b) 電流密度(-j)對ω⁻¹/² 關係圖；ω為旋轉角頻率。
圖 3-65 Pt-SCM2-550-H₂SO₄碳材樣品之(a) 不同轉速下之 CV 圖，
(b) 電流密度(-j)對ω⁻¹/² 關係圖；ω為旋轉角頻率。
圖 3-66 Pt-SCM2-850-H₂SO₄碳材樣品之(a)不同轉速下之CV圖，
(b) 電流密度(-j)對ω⁻¹/₂ 關係圖；ω為旋轉角頻率。
表3-10 各陰極觸媒在氧氣還原反應交換電子傳遞數一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>N 值</th>
<th>Sample</th>
<th>N 值</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt-SCM2-350</td>
<td>1.17</td>
<td>Pt-SCM2-350-H₂SO₄</td>
<td>2.16</td>
</tr>
<tr>
<td>Pt-SCM2-550</td>
<td>1.75</td>
<td>Pt-SCM2-550-H₂SO₄</td>
<td>1.51</td>
</tr>
<tr>
<td>Pt-SCM2-850</td>
<td>4.88</td>
<td>Pt-SCM2-850-H₂SO₄</td>
<td>4.47</td>
</tr>
<tr>
<td>Pt-SCM2-350-H₂O₂</td>
<td>2.91</td>
<td>Pt-SCM2-350-TA</td>
<td>1.66</td>
</tr>
<tr>
<td>Pt-SCM2-550-H₂O₂</td>
<td>2.42</td>
<td>Pt-SCM2-550-TA</td>
<td>1.86</td>
</tr>
<tr>
<td>Pt-SCM2-850-H₂O₂</td>
<td>4.23</td>
<td>Pt-SCM2-850-TA</td>
<td>4.31</td>
</tr>
</tbody>
</table>

3.3 一步自組裝合成負載金屬之奈米中孔碳材

本實驗室曾開發一種新穎的負載金屬中孔洞碳材的製備方法[76,76]，如 1.3.5 及 2.2.5 小節所敘述製備而成，起初利用於砂模板複製法所合成之中孔洞碳材，有極佳之金屬分散性、電化學活性等結果，因此吾人亦利用此方法應用於一步自組裝合成負載金屬之奈米中孔碳材，亦期望提升 Pt 金屬分散性、增加電化學活性、更節省將 Pt 金屬還原等步驟，對於作為燃料電池電極材料更為方便，因此將 SCM1s、SCM2s 兩種碳材分別加以探討與研究。

3.3.1 不規則奈米中孔洞碳材

本節中所討論之負載 Pt 金屬中孔碳材（PtSCM1s）樣品，皆係根據 2.2.5 節所述，其於合成中孔碳材過程之中加入 Pt 金屬前驅物。
吾人分別將碳材加入不同 Pt 金屬量且與碳材本身相互比較，由高角度 XRD 圖譜瞭解，$2\theta = 39.8^\circ$ 有 Pt 金屬之主要峰（111）訊號，（圖 3-67 所示）利用 Scherrer formula（$d = k\lambda/\beta_{1/2}\cos\theta$；$k \sim 1$，銅靶 X 光波長 $\lambda = 1.54\text{Å}$）推算（220）之繞射特徵峰，結果顯示 PtSCM1 樣品中之 Pt 顆粒大小均介於 4~5 nm。經由穿隧式電子顯微鏡（TEM）拍攝圖可獲知，其所負載之 Pt 金屬平均粒徑约为 3 ~ 5 nm，（圖 3-70 所示）與 Scherrer formula 推算結果一致，且其 Pt 金屬顆粒分散性相當均勻。利用氮氣吸附/脫附量測（BET）碳材之比表面積、孔洞大小、孔體積等觀察到 Pt 金屬添加量增加而比表面積、孔體積隨之下降（圖 3-68 至圖 3-69；表 3-11 所示）。
圖 3-67 PtSCM1s 碳材樣品之高角度 XRD 圖譜。

圖 3-68 SCM1s 碳材樣品之氮氣等溫（77K）吸附/脫附曲線圖。
表 3-11 PtSCM1s 碳材樣品之物理性質一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pt loading (wt%)</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtSCM1-850</td>
<td>0</td>
<td>336</td>
<td>8.5</td>
<td>0.39</td>
</tr>
<tr>
<td>PtSCM1-01-850</td>
<td>5</td>
<td>379</td>
<td>7.5</td>
<td>0.42</td>
</tr>
<tr>
<td>PtSCM1-02-850</td>
<td>20</td>
<td>374</td>
<td>6.9</td>
<td>0.36</td>
</tr>
</tbody>
</table>

圖 3-69 PtSCM1s 碳材樣品之 BJH 孔徑分佈圖。
圖 3-70 PtSCM1s 碳材樣品之 TEM 圖。
3.3.2 規則奈米中孔碳材

本節中所討論之負載 Pt 金屬中孔碳材（PtSCM2s）樣品，皆係根據 2.2.5 節所述，其於合成中孔碳材過程之中加入 Pt 金屬前駕物。吾等分別將碳材加入不同 Pt 金屬量且與碳材本身相互比較，由低角度 XRD 圖譜顯示在（100）之繞射特徵峰隨 Pt 金屬添加量增加而逐漸縮小趨勢，表示結構與金屬添加量有關，加入越多金屬則會導致結構變差甚至不見。而高角度 XRD 圖譜，$2\theta = 39.8°$ 有 Pt 金屬之主要峰（111）訊號，（圖 3-71～3-72 所示）利用 Scherrer formula ($d = k\lambda/\beta_{1/2}\cos\theta; k \sim 1$, 鋼靶 X 光波長 $\lambda = 1.54Å$）推算（220）之繞射特徵峰，結果顯示 Pt-SCM2s 樣品中之 Pt 顆粒大小均介於 4~5 nm。經由穿隧式電子顯微鏡（TEM）所拍攝圖可獲知，其所負載之 Pt 金屬平均粒徑約為 3~5 nm，（圖 3-73 所示）與 Scherrer formula 推算結果一致，且其 Pt 金屬顆粒分散性相當均勻。利用氮氣吸附/脫附量測（BET）碳材之比表面積、孔徑大小、孔體積等，觀察到金屬添加量增加而比表面積、孔體積隨之下降，（圖 3-73～3-74；表 3-12 所示）。
圖 3-71 PtSCM2s 碳材樣品之低角度 XRD 圖譜。

圖 3-72 PtSCM2s 碳材樣品之高角度 XRD 圖譜。
圖 3- 73 PtSCM2s 碳材樣品之氮氣等溫（77K）吸附/脫附曲線圖。

圖 3- 74 PtSCM2s 碳材樣品之 BJH 孔徑分佈圖。
表 3-12 PtSCM2s 碳材樣品之物理性質一覽表。

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pt loading (wt%)</th>
<th>Surface area (m²/g)</th>
<th>Pore size (nm)</th>
<th>Pore volume (cm³/g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PtSCM2-850</td>
<td>--</td>
<td>700</td>
<td>5.6</td>
<td>0.66</td>
</tr>
<tr>
<td>PtSCM2-01-850</td>
<td>1.6</td>
<td>634</td>
<td>4.7</td>
<td>0.54</td>
</tr>
<tr>
<td>PtSCM2-02-850</td>
<td>4.5</td>
<td>616</td>
<td>6.7</td>
<td>0.67</td>
</tr>
<tr>
<td>PtSCM2-02-850</td>
<td>6.4</td>
<td>338</td>
<td>5.4</td>
<td>0.36</td>
</tr>
</tbody>
</table>
圖 3-75 PtSCM2s 碳材樣品之 TEM 圖。
3.3.3 規則孔洞碳材負載金屬之氧化還原反應

吾人將 PtSCM1s 與 PtSCM2s 系列碳材測試氧化還原反應效能得
知，其效能表現結果不如預期，吾人推測因為將 Pt 金屬於一步自組
裝合成過程中加入一起進行共組裝反應，所以 Pt 金屬可能被包裹
於碳材內，導致 Pt 金屬觸媒表現無法如預期，以致於在氧化還原反
應中效能並不理想。所以吾人利用熱重分析儀（TGA）去測試，通入
氧化將碳材表面少部分之碳材燒竭，讓 Pt 金屬能夠裸露出來，以增
加觸媒活性。所以分別將 PtSCM1 與 PtSCM2 在 10% 氧氣環境下，
加熱到 380℃及 440℃（圖 3- 76 所示），將碳材表面碳材燒竭 23%，
進而在 400℃ 氫氣環境下將 Pt 金屬還原，再進行氧化還原反應測試，
結果發現經過表面燒竭處理之兩碳材，氧化還原反應之效能都明顯提
升，表示碳材金分層燒竭後讓 Pt 金屬裸露後，增加觸媒之活性。且
又觀察到，有規則性結構之 PtSCM2-03 碳材其活性比無結構碳材更
顯著的提升氧化還原反應之效能（圖 3- 77 所示），吾人推測可能是
在有序孔洞結構中氧氣傳輸效率較好所造成。
圖 3- 76 PtSCM1s 與 PtSCM2s 碳材樣品不同溫度下質量損失之 TGA 圖示。

圖 3- 77 PtSCM1s 與 PtSCM2s 碳材樣品之循環伏安(CV)圖。
3.4 綜合比較

本小節吾人以不同合成方式的鉑金屬碳材以相同的測量條件進行氧氣還原反應（Oxygen Reduction Reaction）活性比較。碳材選擇則以本論文之自組裝合成碳材 SCM1s、SCM2s 中氧氣還原反應活性效能最佳者，與本實驗室複製法合成之孔洞碳材[115]互相比較與探討。由圖 3-78 所示，從 Onset Potential (Kinetic Controll) 可瞭解，自組裝合成方式所合成之 SCM1-850-H₂O₂及 SCM2-850 中孔洞碳材氧化還原反應效能活性較複製法合成之孔洞碳材來的好。

由上述可瞭解奈米碳材運用於燃料電池陰極電極，其合成方式利用自組裝合成中孔洞碳材不僅可以節省合成時間，降低價格之外，其效能表現亦優於複製法合成之中孔洞碳材。

此結果只是初步之實驗數據，還有更多細節可做更深入探討與相關性研究，相信未來還有更新穎合成碳材之方法，讓燃料電池更蓬勃發展。
圖 3-78 不同合成製備方法之鈷金屬奈米中孔碳材活性比較之循環伏安（CV）圖。
第四章 結論

本實驗之目的利用有機-有機自組裝方式一步合成中孔洞奈米碳材，不需再藉由矽模板複製法等複雜步驟，又由於有機化合物材料便宜且易取得，所以可節省時間與經濟效益。合成之碳材在經由不同表面修飾方式，進而瞭解碳材表面修飾所造成的影響，進而負載金屬於孔洞碳材中，運用於燃料電池陰極氧化還原反應上。並以各種儀器鑑定結構、物理性質、觸媒活性等等，歸納儀器鑑定所的得之數據得出以下結論。

1. 利用有機-有機自組裝一步合成奈米中孔洞碳材可有效節省合成時間與提升經濟效益，且仍保持碳材之有序結構性、孔洞性、高比表面積等特性。

2. 利用含氮官能基與過氧化氫對碳材表面進行修飾能有效提升金屬負載於碳材上之分散性，可避免金屬聚集嚴重影響觸媒活性。

3. 經高溫石墨化所負載金屬之碳材，其電化學活性比低溫來的佳，主要因素是石墨化程度與導電性成正比，且 850℃石墨化之碳材電子交換傳遞數目最為接近最佳值 n ≈ 4。

4. 經由過氧化氫表面修飾後之孔洞碳材，其氧氣還原反應活性都明顯增強，因為利用過氧化氫修飾後金屬分散性增加，因而增加觸
媒活性。

5. 負載金屬之有序孔洞結構中孔碳材其氧氣還原反應活性較無序孔洞結構中孔碳材為佳，因為有序孔洞結構能更利於氧氣與 Pt 金屬觸媒相互反應，使得其活性較佳。

6. 一步自組裝合成負載金屬之奈米中孔碳材經過氧氣部分燒結更可提升其在氧氣還原反應之活性，且具有序孔洞之結構其反應活性比無序孔洞結構更佳。
参考文献

(66) Takaoka, M.; Yokokawa, H.; Takeda, N. *Applied Catalysis B: Environmental*, 2007, 74, 179.

(80) 陽志忠、林証恩、韋文成，燃料電池的發展現況，科學發展，2003，367.

(85) 吳季勳，碩士論文，國立中央大學化學研究所，”新穎質子交換膜”，**2004**年 6 月.

(103) Huang, J. C. *Micro-fuel cell workshop*, **2001**.

(106) Atkin, P. W. in “*Physical Chemistry sixth edition*”, Oxford University Press, 28,
1998.

