黃文吉陳昊2019-09-052013-8-212019-09-052012http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699470228%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106898本論文針對快速棘波分類設計了一套專用的架構,並於硬體中實現此架構。本論文採用Generalized Hebbian Algorithm (GHA) 來擷取棘波的特徵值,搭配Fuzzy C-Means (FCM) 演算法將擷取到的棘波特徵值進行分類。GHA演算法可高速計算主成分特徵值供後續分群演算法進行運算。同時,利用FCM演算法對於初始質心選取好壞不敏感的特性可獲得較佳的分類結果。為了加速執行時間與運算速度,針對GHA架構進行了管線化設計,使各單元運算能併行運作,提升產能輸出,而FCM採用逐步增量計算權重係數與質量中心點,這可以避免原本需要大量儲存空間儲存權重係數矩陣所造成的空間消耗。因此,本論文所提出的架構同時擁有低資源消耗(area cost)與高輸出產能(throughput)的優點。為了驗證本論文所提出的架構有效性,我們於現場可程式邏輯閘陣列 (Field Programmable Gate Array , FPGA) 中實作出本架構,並於嵌入式System-On-Programmable-Chip (SOPC) 平台中進行實際效能量測。實驗結果證明針對棘波分類本論文所提出的架構同時具有低判斷錯誤率、低資源消耗與高速計算的優點。棘波分類GHA演算法管線化GHA以管線化GHA電路實作棘波分類之硬體架構設計Pipelined GHA Hardware Implementation for Spike Sorting