蕭顯勝Hsiao, Hsien-Sheng林奕維Lin, Yi-Wei2019-09-032022-07-312019-09-032017http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060471063H%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/96432機器人教學為一個跨領域課程,整合電機、電子、機械、資訊、控制等科技領域的知識和技能。6E(Engage、Explore、Explain、Engineer、Enrich、Evaluate)模式是以學習者為中心的教學模式,目的是提升學習者設計與探究的能力,搭配實作教學活動可以整合理論與實作經驗,補強學生無法將課程內容實際應用的情況。透過實作教學活動與6E模式,能提供學習者理解課程知識及驗證概念的機會,並且深化學習者對知識概念的理解及應用。 本研究旨在探討不同教學模式(6E模式、傳統教學模式)對國小高年級學生在機器人實作教學課程對學習動機、學習成效及實作能力之影響。使用6E模式搭配實作教學,發展在地學校文化特色為「螃蟹」主題的機器人教學課程,其中課程內容包含了資訊科技與生活科技,學生透過實作活動設計程式與組裝機器人,達到動手做、動腦思考、自我導向的學習。研究對象為國小高年級學生共70位學生,實驗採用準實驗研究法,自變項為教學模式,依照不同教學模式分為6E模式與傳統教學模式兩種;依變項則包含學習動機、學習成效與實作能力。研究結果顯示:(1)兩組學生對機器人實作課程皆抱持正向的學習動機且感興趣;(2)採用6E模式在機器人實作課程能有效的提升學習成效及實作能力。Robot education was an interdisciplinary curriculum, integrated knowledge and skills of electrical, electronic, mechanical, computational, control and other fields. 6E (Engage, Explore, Explain, Engineer, Enrich, Evaluate) model is a student-centered teaching model. The purpose of this model is to strengthen the design and scientific inquiry ability. By combining with the hands-on teaching activities which could integrated theory and practice, enhanced student’s abilities for course content that couldn’t apply. Through hands-on teaching activites and 6E model, provided opportunity for students to enrich their knowledge and evaluate the concept. The purpose of this study was to design a 6E model of the robot course and explore elementary students’ learning motivation, learning effectiveness and hands-on ability. Through hands-on teaching activites and 6E model, “Crab” was chosen as the course subject, by development the school-based local cultural features. The course included the teaching fields of information technology and living technology. Students not only learned to programming but also assembled robot by themselves, achieved self-oriented learning. The participants were the fifth and sixth graders and the effective sample size was 70. A quasi-experimental design was employed with type of teaching model as the independent variables. While the teaching models included 6E model and traditional teaching model. The dependent variables were learning motivation, lerning effectiveness and hands-on ability. The results show that 6E model in robot education will improve learning motivation, learning effectiveness and hands-on ability.機器人教學實作教學6E模式robot educationhands-on teaching6E model6E模式於機器人教學課程對國小高年級學習者學習動機、學習成效及實作能力影響之研究Using 6E Model on Robot Education to Improve Elementary School Students’ Learning Motivation, Learning Effectiveness and Hands-on Ability