林震煌Lin, Cheng-Huang吳侑倫Wu, You-Lun2019-09-04不公開2019-09-042015http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060242083S%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/100006本研究承接氣相層析/音哨檢驗法的開發與研究,首次以3D列印技術製造各式不同的發音哨,用來求得最佳發音模型,以便作為日後微型化高靈敏度氣體檢驗元件之用。當本元件作為氣相層析儀的氣體偵測器時,可藉由麥克風接收頻率變化,透過音效卡記錄。在固定流速的情況下,發音哨的頻率變化會和通過的氣體分子平均分子量平方根成反比的關係,並以此搭配分離技術,可藉由數學公式計算直接得到氣體的未知濃度。相對於傳統的氣體檢驗方式,本元件不需以發光、發熱、燃燒或其他的化學變化去得到電子訊號,而是以物理的方式,只需比較頻率的變化量,即可進行定量分析。因此非常適用於各種氣體的檢測。實驗步驟先以耐熱溫度200度以上的工程用ABS (acrylonitrile butadiene styrene,丙烯腈-丁二烯-苯乙烯共聚物)來做為塑料,使用3DS Max繪圖軟體設計出發音哨的3D立體結構,探討不同的實驗參數對發音的頻率、發音範圍以及發音強度的影響,尋找出最為穩定的發音結構。For the first time, a milli-whistle as a gas chromatography (GC) detector is manufactured by 3D printer. When the gas passes through the whistle, a sound with a fundamental frequency is produced. We use the microphone to receive the sound which produced by the whistle and record the frequency change of sound by sound card. The sound frequency is related to the mean molecular weight of the gas which passes through the whistle. Therefore, we can calculate the unknown concentration of the gas by a mathematical formula. The difference between this analysis method and others is that this device doesn’t need chemical reaction. This analysis method just needs physical reaction. Quantitative analysis can be done just by calculating the frequency change. It is suitable for detecting various kinds of gases. The first step of experiment is using ABS which is stabile over 200 degrees Celsius as material to product the whistle which design by 3ds Max. We analyze the effect of different experimental parameters on the sound frequency, scope and strength to find out the most stable whistle structure.3D印表機微型哨式發音器氣相層析儀3D printermilli-whistlegas chromatography氣相層析音哨檢測法之3D列印哨的發展與應用Design and applications of 3D-printed whistles in gas chromatography