駱安亞黃逸仁Lo, An-YaHuang, Yi-Jen郭慶宏Kuo, Ching-Hung2025-12-092030-07-012025https://etds.lib.ntnu.edu.tw/thesis/detail/b81282268eef5c1561fc99df076b5ec4/http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/125269超級電容(Supercapacitor),又稱電化學電容器或電雙層電容器,相較於傳統電容器及電池,超級電容器具有高功率密度、高能量密度以及高循環壽命之特性。能夠在短時間內釋放或吸收大量能量,適合用於需要瞬時大電流的應用,如:電動車加速、再生煞車系統和大功率啟動設備等……。回收超級電容對於環境的影響也相較於普通電池小,更符合現今綠色能源趨勢。本研究擬利用高比表面積中孔碳 (CMK-3)及混合氧化物NiMoO4、CoMoO4開發複合電極,以提升其電化學性能,進而應用於高效能超級電容器之能量儲存元件。製程上採用水熱合成法在不同溫度下分別進行熱處理,透過CV、SEM分析其電容量和表面型態,進而篩選出最合適的熱處理溫度。再使用化學沉積法將複合氧化物水溶液加入中孔碳材(CMK-3),使其滲透中孔碳材(CMK-3)孔洞,並經由適當熱處理形成複合氧化物奈米粒子附著在中孔碳材(CMK-3)上,例如: CMK-3@ NiMoO4、CMK-3@ CoMoO4及CMK-3@ NiMoO4/CoMoO4,提昇性價比。本研究分別最佳化了(1)製程溫度、(2) NiMoO4與CMK-3之比例、(3) CoMoO4與CMK-3之比例、(4) CMK-3@NiMoO4/CoMoO4之比例,進而篩選出最適合的複合電極。本研究證明在400度的環境下作為最佳煅燒溫度,以CMK-3@CoMoO₄ 作為最佳比例使電容值提升至285 F/g。此外,此複合系統具有優異的循環穩定性,在5000次充放電循環後電容保持率為91.8 %,此複合電極為未來超級電容器的設計和開發提供了新途徑。然而本研究針對不同比例之 NiMoO₄/CoMoO₄ 摻雜於 CMK-3 之複合材料進行電容特性與經濟效益分析,得出若考量製備成本與性價比,則需在部分電容效能下妥協之結論。計算出Ni:Co = 8:2的樣品在兼顧比電容與成本之下展現最高的性價比(98.2 F/NTD),可視為兼顧效能與成本的最佳平衡材料。Supercapacitors, also referred to as electrochemical capacitors or electric double-layer capacitors, exhibit superior properties including high power density, high energy density, and long cycle life in comparison with conventional capacitors and batteries. It can also release or absorb large amounts of energy in a short time, making it suitable for applications requiring instantaneous high currents, such as electric vehicle acceleration, regenerative braking systems (RBS), and high-power starting equipment. Additionally, recycling supercapacitors has less environmental impact compared to conventional batteries, aligning better with today's green energy trends. This study aims to develop composite electrodes using high specific surface area mesoporous carbon (CMK-3) combined with mixed oxides NiMoO4 and CoMoO4. Hydrothermal synthesis is employed, followed by heat treatment at different temperatures. Through CV and SEM analyses, the optimal heat treatment temperature is determined. A chemical deposition method is then used to introduce a mixed oxide aqueous solution into the mesoporous carbon material (CMK-3), enabling the solution to infiltrate the pores of CMK-3. Proper heat treatment allows the formation of mixed oxide nanoparticles attached to the mesoporous carbon (e.g., CMK-3@NiMoO4, CMK-3@CoMoO4, and CMK-3@NiMoO4/CoMoO4), thereby enhancing capacitance. For process parameters, optimization was performed for: Process temperature, The ratio of NiMoO4 /CMK-3, The ratio of CoMoO4 /CMK-3, and CMK-3@NiMoO4/CoMoO4, identifying the most suitable composite electrode.This study identified 400 °C as the optimal calcination temperature, the CMK-3@CoMoO₄ electrode exhibited the highest specific capacitance of 285 F/g. Furthermore, the composite system demonstrated excellent cycling stability, retaining 91.8% of its capacitance after 5,000 charge-discharge cycles, providing a promising pathway for the future development of advanced supercapacitors. However, when analyzing the electrochemical performance and economic feasibility of CMK-3@NiMoO₄/CoMoO₄ composites with different Ni:Co ratios, the results indicate that some compromise in capacitance performance may be necessary in favor of cost-efficiency. The sample with a Ni:Co ratio of 8:2 exhibited the highest unit cost efficiency (98.2 F/g·TWD⁻¹), making it the most balanced material in terms of both performance and affordability.超級電容中孔洞碳材NiMoO4奈米粒子CoMoO4奈米粒子複合電極supercapacitormesoporous carbon materialNiMoO4 nanoparticlesCoMoO4 nanoparticlescomposite electrodeCMK-3/NiMoO4@ CoMoO4複合電極之開發及其於超級電容之應用Development of CMK-3/ NiMoO4@ CoMoO4 Composite Electrode for Supercapacitor Application學術論文