陳界山Jein-Shan Chen蔡懷潁Huai-Yin Tsai2019-09-052011-1-192019-09-052011http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0698400056%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101809在這篇論文,我們主要研究廣義FB函數與其merit函數的一些幾何性質.非線性互補問題可以化成等價的約束最小化問題. 利用曲線與曲面的觀點,我們能得到直觀的想法來分析descent演算法的收斂行為. 幾何觀點更進一步指出在merit函數的方法下如何設定參數以改良演算法.In this paper, we study some geometric properties of generalized Fischer-Burmeister function, ϕp(a, b) = ∥(a, b)∥p − (a + b) where p ∈ (1,+∞), and the merit function ψp(a, b) induced from ϕp(a, b). It is well known that the nonlinear complemen-tarity problem (NCP) can be reformulated as an equivalent unconstrained minimization by means of merit functions involving NCP-functions. From the geometric view of curve and surface, we have more intuitive ideas about convergent behaviors of the descent algo-rithms that we use. Furthermore, geometric view indicates how to improve the algorithm to achieve our goal by setting proper value of the parameter in merit function approach.曲線曲面等高線NCP函數merit函數Curvaturesurfacelevel curveNCP-functionmerit function廣義FB函數與其merit函數的幾何觀點Geometric view of generalized Fischer-Burmeister function and its induced merit function