陳美勇Mei-Yung Chen蔡一豪I-Haur Tsai2019-09-032014-8-212019-09-032014http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060173020H%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/97125本研究針對單軸壓電定位平台進行遲滯效應補償及設計迴路增益強韌控制器,使平台能消除非線性遲滯效應且達到精密定位。 由於半導體製程的發展快速,對於晶片載台的定位精度要求也亦趨嚴格,傳統機械架構已難以達到高精度之要求,由於壓電材料具有高解析度、高精度等優點,採用壓電材料作為晶片載台驅動器,驅動平台達到精密定位需求,具有相當的發展潛力。本研究藉由系統鑑別技術,將系統非線性遲滯效應的特性先透過Bouc-Wen模型建立其模型,並進而補償此非線性特性;此外,亦透過適當的控制器設計,使壓電制動平台能達到高精度定位控制效果。實驗結果顯示,所設計的遲滯補償及控制器,能有效地消除非線性影響及達到預期的控制目標。This thesis is dedicated in hysteresis effect’s compensation and loop-shaping robust controller design of one axis piezoelectric stage, evading its nonlinear hysteresis, and achieves precise positioning. As semiconductor technology advances, the demand for the accuracy of positioning systems also increases. Traditional mechanical transmission systems may not be able to satisfy these demands. Piezoelectric actuators are characterized by high resolution, high accuracy, and large driving force; hence, they are applicable in position control platforms. In this following work, the Bouc-Wen model is adopted to establish a model piezoelectric-nonlinear system, and an inverse Bouc-Wen model, employed to designed to compensatethe piezoelectric-nonlinear system, renders the piezoelectric system linear. The result indicates that the method of loop-shaping robust controller for the piezoelectric platform and the compensating technique by the inverse Bouc-Wen model can eliminate nonlinearity effectively, and achieve precise positioning.半導體定位控制壓電致動器遲滯效應迴路增益強韌控制Semiconductorpositioning controlpiezoelectric actuatorhysteresisloop-shapingrobust control奈米平台上之逆Bouc-Wen模型迴路增益強韌控制Inverse Bouc-Wen model Roubst loop-shaping control for a nano-positioning stage