楊啟榮Chii-Rong Yang廖莉菱Li-Ling Lia2019-09-032011-8-202019-09-032009http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0696730172%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/97200本研究利用特殊界面活性劑添加於熱電材料鍍液中,以電化學沉積的方式電鑄n-type Bi-Te及p-type Sb-Te熱電材料,探討因添加界面活性劑而產生的碳原子與氧原子,是否跟隨著熱電材料同時產生。同時,藉由平行線量測法對電化學沉積的熱電材料,量測其有無界面活性劑條件下之熱傳導係數,並獲得相關的熱電特性。最後,利用已知熱電特性的熱電材料,搭配微機電製程技術,進行微致冷晶片之研製。 進行熱電鑄層分析結果證實,添加界面活性劑MA後所產生的碳原子,乃一開始即伴隨熱電材料同時沉積,而氧原子則因鑄層表面與空氣接觸後產生氧化反應。以平行線量測法成功量取熱電材料的熱傳導係數,量測結果未添加界面活性劑MA的Bi-Te熱電材料,其熱傳導係數為0.241 W/mK,而未添加界面活性劑MA的Sb-Te熱電材料,其熱傳導係數為0.415 W/mK;添加界面活性劑MA後的Bi-Te熱電材料,其熱傳導係數為0.422 W/mK。藉由熱電優值公式獲得未添加界面活性劑MA的Bi-Te熱電材料,其熱電優值為4.838×10-4 /K,在常溫工作環境下的ZT值為0.145;而未添加界面活性劑MA的Sb-Te熱電材料,其熱電優值為14.7×10-4 /K,在常溫工作環境下的ZT值為0.441。添加界面活性劑MA後的Bi-Te熱電材料,其熱電優值為2.571×10-4 /K,在常溫工作環境下的ZT值為0.077。最後,將已知熱電特性的熱電材料,藉由電化學沉積搭配微機電製程技術,成功研製出18對及50對的微致冷晶片,其熱電接腳尺寸為80 m的方形陣列,電鑄高度約為8 m,後續將量測其致冷性能,並比較在不同對數條件下的致冷能力。In this study, n-type Bi-Te and p-type Sb-Te thermoelectric materials are electroformed by surfactant-added electrochemical deposition method. The amounts of carbon and oxygen elements generated from the addition of surfactant were evaluated to analyze whether they were simultaneously deposited with thermoelectric materials. For thermoelectric materials which were electrodeposited with or without surfactant addition, the thermal conductivity and related thermoelectric characteristics were measured by parallel line method. Finally, the n-type Bi-Te and p-type Sb-Te materials with known properties were applied to fabricate micro-cooler by MEMS process. The composition analysis shows that the carbon element generated from surfactant (MA) addition were deposited with thermoelectric materials simultaneously, and the oxygen element on the surface of thermoelectric materials came from the oxidation reaction of electroformed layer. For Bi-Te material without MA addition, the thermal conductivity is 0.241 W/mK, the figure of merit is 4.838×10-4 /K, and room-temperature ZT value is 0.145. For Sb-Te material without MA addition, the thermal conductivity is 0.415 W/mK, the figure of merit is 14.7×10-4 /K, and room-temperature ZT value is 0.441. On the other hand, for Bi-Te material with MA addition the thermal conductivity is 0.422 W/mK, the figure of merit is 2.571×10-4 /K, and room-temperature ZT value is 0.077. Finally, micro-coolers with 18 and 50 Bi2Te3/Sb2Te3 pairs were fabricated by electrochemical deposition and MEMS techniques, in which the dimension of the thermoelectric legs is 80 m and thickness of the electroform is 8 m. Furthermore, the comparison of the cooling capability under different conditions will be measured.熱電材料電化學沉積技術界面活性劑熱傳導係數微致冷晶片Thermoelectric materialelectrochemical deposition technologysurfactant-added techniquethermal conductivitymicro-cooler熱電材料應用於散熱微致冷晶片之技術開發Development of micro cooler using thermoelectric material