蔣宗哲Chiang, Tsung-Che張祐騰Chang, Yu-Teng2019-09-052018-02-172019-09-052017http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060247014S%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106351本論文將MOEA/D應用於求解多目標定序流線型工廠排程問題(multi-objective permutation flowshop scheduling problem),已知多目標定序流線型工廠排程問題是一個 NP-hard 問題,無法確保在多項式時間內將該問題求得最佳解。在這個問題中有多個零件(job)需要依序送入機器(machine)中加工,而每個零件根據製程(operation)不同而有不同的加工時間(processing time);所有零件皆加工完成的時間為最大完工時間(makespan),而每個零件的完工時間總和為總流程時間(total flow time),我們希望能同時最小化最大完工時間與總流程時間,但縮短最大完工時間可能使得總流程時間增加,反之亦然;然而,我們可以求出非凌越解(non-dominated solution),這些解在目標空間形成一條柏拉圖前緣(Pareto front),我們的目標是求解得到盡量靠近真實解,且分佈越完整的柏拉圖前緣。 過往文獻中,使用 MOEA/D 這種將目標空間(objective space)分解的方法並不多;本論文深入探討 MOEA/D 流程中各個操作對效能之影響;除此之外,我們使用區域搜尋強化解的品質,並探討不同搜尋方式對效能之影響。我們使用Taillard 測試問題集進行實驗分析,並與知名演算法比較,本論文提出的演算法在中、大型的問題具有較好的效果。多目標定序流線型工廠排程問題區域搜尋MOEA/D以MOEA/D結合適應性區域搜尋求解多目標定序流線型工廠排程問題MOEA/D with adaptive local search for multiobjective permutation flowshop scheduling problems