洪有情Yu-Ching Hung賴勇仁Yung-Ren Lai2019-09-052005-8-12019-09-052005http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G0069240001%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101460設X是一個各個位置為變數x_ij的矩陣,R=K[X]是一個係數佈於一個體的多項式環。在1989年和1990年,Sturmfels,Caniglia和Guccione各自證明了X的所有相同次數的子式對於某個lexicographic單項式次序會是一組Grbner基底;在1992年,Herzog和Trung進一步提供了一種取不同次數的子式也會是Grbner基底的方法。在這篇論文中,我們又提供了一種取不同次數的子式也會是Grbner基底的方法。Let K be a field and R=K[X] be the polynomial algebra generated by the entries of a generic m×n matrix X=(x_ij) over K. Let p be a positive integer. Let G_p be the set of all p-minors of X and I be the ideal generated by G_p. Sturmfels and Caniglia et al. had proved that G_p is a Grbner basis for I with respect to some lexicographical term order of R. Later in 1992, Herzog and Trung improved their result. Also, in 1994 Conca obtained a similar result for a symmetric matrix. In this paper, we get some results similar to their results as follows. Theorem:Let X=(x_ij) be a generic m×n matrix over a field K, and let R=K[X]. Let m≧a_1≧…≧a_r , b_1≦…≦b_r≦n be nonnegative integers, and η_1,…,η_(r+1) be positive integers. Let D_t(X) be the part of the matrix X consisting of the last a_t rows and the first b_t columns. Let G_t(X) be the set of all (η_t)-minors of D_t(X), t=1,…,r and set D_(r+1)(X) be the set of all (η_(r+1))-minors of X. Let I be the ideal of R generated by the G(X)=∪G_t(X); then G(X) is a Grbner basis for I with respect to the lexicographic term order induced from the variable order x_11> x_12>…> x_1n> x_21>… > x_m1>… > x_mn. We also prove that if X=(x_ij) in the above theorem is an n×n symmetric matrix, then the theorem also holds.Grbner基底子式Grbner basesminor一般子式理想之Grbner基底Grbner bases of ideals of generic minors