劉家新劉任浩2019-09-052007-6-112019-09-052007http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0693400013%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101717在1960年代中期, 關於 integral group rings 中的 torsion units 及 finite subgroups, H. Zassenhaus 提出了三個猜想。 其中最強的一個猜想(ZC-3)如此敘述: 如果 H 是 integral group ring ZG 裡係數和為 1 的 unit group 的有限子群, 則 H 會和 G 裡的一個子群在 QG 裡共軛。 這篇論文裡, 我們要證明的是 ZC-3 對個數為 p^2q 的群皆成立, 其中 p, q 為相異質數。In the 1960's, H. Zassenhaus made three conjectures about torsion units and finite subgroups of the units in integral group rings. The strongest one (ZC-3) states: If H is a finite subgroup of the unit group of augmentation 1 in the integral group ring ZG, then H is conjugate to a subgroup of G in QG. In this thesis, we prove that ZC-3 holds for groups of order p^2q, where p, q are distinct primes.群環表現group ringrepresentation整係數群環裡的有限乘法群Finite Subgroups of Units in Integral Group Rings