賈至達Chia Chihta徐意娟Hsu Yi Chuan2019-09-052003-6-302019-09-052003http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G0069041024%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/102368本論文內容共可分為兩大部分:第一部份主要研究各種形狀及大小的奈米氧化鋅樣品,在高壓作用下的聲子特性以及其結構相變發生之壓力,第二部分則是研究不同載子濃度的氮化鎵奈米線,在壓力作用下電性發生變化的現象,以應證其A1(LO)聲子不對稱的原因。 由常溫常壓下氧化鋅各樣品的拉曼光譜圖,發現量子點樣品在1050cm-1處看到一個可能是由於表面效應而產生的聲子。在ZnO升壓的過程中,聲子頻率與壓力呈線性的關係,並發現奈米氧化鋅材料的結構相變壓力較塊材高,當粒徑愈小相變壓力愈高,且其高壓相也愈不穩定。本論文所使用之ZnO樣品發生結構相變的壓力範圍分述如下:27nm dots:在8.7~11.6GPa之間,54nm dots:是在9.2~11.2GPa之間,而205nm rods:是在9.7~10.9GPa之間。所有的樣品於壓力降到約1.5~2.1GPa時,氯化鈉結構的拉曼聲子會完全消失而回復烏采結構,也就是說氧化鋅奈米結構的結構高壓相變過程是可逆的,但在烏采結構恢復前,會先相變至一個與烏采結構相近的中間暫穩態相,此中間態相與原子沿C軸方向的排列有密切的關係。 由常溫常壓下氮化鎵各樣品的拉曼光譜圖中,發現隨著420cm-1附近的布里淵區邊界聲子強度的增強,A1(LO)聲子強度漸強且變得不對稱,此現象與載子濃度有很大的關係,因為較高的雜質濃度會增加聲子間發生交互作用(多階拉曼散射發生)的機率,由上述可判斷本實驗之氮化鎵奈米線樣品的載子濃度為:A6<S2<S1。而在隨壓力變化的拉曼光譜圖中,當壓力到達某值時,A1(TO)聲子與壓力之線性關係斜率會突然發生改變,此時氮化鎵之電性由半導體轉變導體,本實驗中樣品的相變壓力分別為S1:12.5GPa,S2:23.2GPa,A6:24.2GPa,由此推斷樣品的載子濃度應為:A6<S2<S1,由上述實驗結果可知,LO聲子的形狀和強度確實是載子濃度的效應,而非表面聲子。高壓拉曼氧化鋅氮化鎵鑽石砧High PressureRamanZnOGaNDiamond Cell寬能帶氧化鋅、氮化鎵奈米晶體之高壓拉曼光譜研究High-pressure Raman Study of Wide-band Gap ZnO- and GaN-nanocrystals