邱美虹Chiu, Mei Hung白勝安Pai, Sheng An2019-09-052012-2-202019-09-052012http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0697450121%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/104688我國100學年度實施的97年國民中小學課程綱要中,將人體恆定性列為必須學習的能力指標之一。美國科學促進學會在Project 2061科學素養的基準中,指出國中人體生理學教學不應僅側重在生理結構和功能介紹,更應強調生命維持的基本需求,包括各個層次生理結構的互動以維持穩定的體內環境。 本研究以二階層診斷問卷、半結構式訪談和教學錄影施測和記錄,探討56名七年級學生人體體溫恆定性心智模式類型與其一致性關係表現,以及心智模式與其一致性兩者受到教學影響的前後如何發生轉變。利用九個命題陳述和五個問題情境設計問卷試題,訪談問題則包括「體溫的改變」、「體溫改變時的反應」和「體溫來源」三類。 研究結果如下: 1、從教學前後的施測結果顯示,學生回答巨觀問題時答對率皆能超過65%,然而對於微觀的題目即使在教學後仍然低於40%,因此無法將顫抖與呼吸作用連結。 2、學生在教學後,不論巨觀或微觀答題表現皆有顯著進步。在延宕測驗中,在巨觀答題的退步未達顯著,但在微觀答題退步達顯著。 3、七年級學生的人體體溫恆定性心智模式類型有科學模式、運動模式、外因模式、不調節模式和混合模式。 4、學生在「體溫來源」、「血液循環與體溫」、「運動、食慾與體溫」和「運動、血液循環與體溫」四個命題陳述中,心智模式一致性較低。前測和後測時在「氣候溫暖」的一致性較低,到了延宕測驗才具有較高的一致性。在「寒冷時運動」的情境中,學生在三次測驗的一致性都偏低。 5、個案教師教學時較少連結生活經驗與微觀機制且未說明「氣候溫暖」和「寒冷時運動」時產熱方式和散熱方式的變化,使學生產生另有概念和降低答題一致性。 研究結果顯示學生較熟悉可觀察到的巨觀現象,而不瞭解微觀機制,且在某些情境答題一致性偏低。教學應強化巨觀和微觀的連結,並涵蓋更多情境。未來研究中可以跨年級研究並結合人體體溫恆定相關「結構」和「功能」以獲得更多心智模式類型。Human physiology is one of the core competences in the 2008 curriculum guidelines for elementary and junior high school education which were implemented in the school year 2011. At the benchmark for science literacy of Project 2061, the American Association for the Advancement of Science points out that rather than only focusing on teaching physiological structure and its function, instruction should more emphasize on the essential requirements for life, including the interactions among all levels of the physiological structure in order to maintain the stable condition inside the body. There are 56 seventh grade students were involved. The data were collected from two-tier diagnostic instrument, semi-structure interview, and instruction. The goals were to investigate the relation between seventh grade students’ mental models regarding the homeostasis of human body temperature and their consistency, and how they were changed after instruction. The questionnaire was designed by using nine propositions and five scenario questions, and the interview questions including the change of the body temperature, the reaction to the change of the body temperature, and the source of the body temperature. The results of the study were as follows. First, over 65 % of the macroscopic related questions were answered correctly while under 40 % of the microscopic related questions even after instruction. The students still could hardly link the concept of tremble and respiration. Second, regardless of the performance on the macroscopic questions or the microscopic questions, the students got improved significantly after instruction. At the delay-test, the students Third, the types of seventh grade students’ mental models regarding the homeostasis of human body temperature were scientific model, exercise model, external factor model, none-adjustment model, and mixed model. Forth, the students performed worse on the mental models’ consistency at the questions regarding “the source of the body temperature”, “bloody circulation and body temperature”, and “exercise, appetite, and body temperature” than the questions regarding other propositions. They answered the questions regarding the situation of the warm weather less consistently at the pre-test and post-test than the questions regarding other situations, but got better consistent at the retention-test. When answering the questions regarding the situation of the exercise in cold weather, the students had low consistency at the three tests. Fifth, the teacher seldom connected the life experience and the microscopic mechanism. Besides, she did not explain how the heat production and the heat exchange varied at the situations of “the warm weather” and “the exercise in the cold weather”. Consequently, the students produced the alternative conceptions and answered low consistently. The results indicated that the students were familiar with the macroscopic and observable phenomenon, but they did not understand the microscopic mechanism, and answered them less consistently at some situations. The instruction should strengthen the connection between the macroscopic and the microscopic representations, and covered more contexts. Further research in this field might consider to conduct for cross-age subjects and integrate the concepts of the the homeostasis of human body temperature related structure and its functions to obtain more mental model types regarding the homeostasis of human body temperature.人體體溫恆定性心智模式概念改變一致性the homeostasis of human body temperaturemental modelconceptual changeconsistency探討七年級學生人體體溫恆定性心智模式與其一致性之關係Investigate the relation between seventh grade students' mental models regarding the homeostasis of human body temperature and their consistency