陳忠慶曾國維Chen, Chung-ChingTseng, Kuo-Wei謝忠展Hsieh, Chung-Chan2023-12-082023-08-142023-12-082023https://etds.lib.ntnu.edu.tw/thesis/detail/2c2429fcb5311371d2ec88d17f17832c/http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/121489目的:(1)肘屈肌群進行第一回合離心運動(the first bout of maximal isokinetic eccentric contraction, MaxEC1),隨後改換成同側膝伸肌群進行第二回合最大離心運動(the second bout of MaxEC, MaxEC2)產生交叉轉移效應。(2)膝伸肌群進行MaxEC1,隨後改換成同側肘屈肌群進行MaxEC2產生交叉轉移效應。方法:招募32名健康成年女性(20-30歲)為研究對象,分配至下肢離心組(non-dominant upper limb / non-dominant lower limb group, NU/NL)、下肢控制組(control / non-dominant lower limb group, C/NL)、上肢離心組(non-dominant lower limb / non-dominant upper limb group, NL/NU)、上肢控制組(control / non-dominant upper limb group, C/NU)(8人/組)。NU/NL組以非慣用側肘屈肌群(30次)和非慣用側膝伸肌群(60次)進行MaxEC1, MaxEC2。NL/NU組以非慣用側膝伸肌(60次)和非慣用側肘屈肌群(30次)進行MaxEC1, MaxEC2。C/NU組以非慣用側肘屈肌群(30次)進行MaxEC1,C/NL組以慣用側膝伸肌群(60次)進行MaxEC1。NU/NL組和NL/NU組在第一、第二回合均間隔14天。在MaxEC1前、MaxEC2後立即及其後第1~5天 (每次間隔24小時) 各進行一次依變項檢測:血液肌酸激酶活性(CK)、肌肉酸痛(DOMS)、肢體圍(CIR)、關節活動度(ROM)、關節釋放角度(JRA)、最大自主等長肌力(MVC)、向心肌力(ISOK)、聲輻射力脈衝彈性影像(ARFI)。以二因子混合設計變異數分析,考驗各依變項於組別 x 時間是否達顯著差異。結果:NU/NL組CK、DOMS、ROM、JRA、MVC、ISOK、ARFI恢復速度均比C/NL組快。NL/NU組所有依變項恢復速度均比C/NU組快。NU/NL組和C/NL組之間DOMS在離心運動後第2天達顯著差異(p<.05)。MVC在離心運動後0、1、2天達顯著差異(p<.05)。ISOK在離心運動後0、1、2天達顯著差異(p<.05)。JRA 45。、60。在離心運動後3天達顯著差異(p<.05)。CK在離心運動後1、2天達顯著差異(p<.05)。NL/NU組和C/NU組之間ROM在離心運動後第3、4、5天組間達顯著差異(p<.05)。ARFI在離心運動後第0、1、2天組間達顯著差異(p<.05)。MVC在離心運動後第0、1、4天組間達顯著差異(p<.05)。ISOK在離心運動後0、1、2、3、4、5天達顯著差異(p<.05)。CK在離心運動後1、2天達顯著差異(p<.05)。結論:本研究發現介入第一回合肘屈肌群或膝伸肌群離心運動可能可以降低第二回合同側異源肌群離心運動造成的肌肉損傷。上述研究結果可提供給教練、運動防護員與物理治療師,作為未來運動員於臨床復健治療時之參考與應用。Purpose: (1) To induce a contralateral repeated bout effect by performing the first bout of maximal isokinetic eccentric contraction (MaxEC1) in elbow flexors and then performing the second bout of maximal isokinetic eccentric contraction (MaxEC2) in knee extensors of the same side. (2) To induce a contralateral repeated bout effect by performing MaxEC1 in knee extensors and then performing MaxEC2 in elbow flexors of the same side.Method: A number of thirty-two healthy women aged 20–30 years were recruited and divided into the non-dominant upper limb / non-dominant lower limb group (NU/NL), control / non-dominant lower limb group (C/NL), non-dominant lower limb / non-dominant upper limb group (NL/NU), and control / non-dominant upper limb group (C/NU) for eight women each group. NU/NL performed 30 MaxEC1 and 60 MaxEC2 using the nondominant elbow flexors and nondominant knee extensors, respectively. NL/NU performed 60 MaxEC1 and 30 MaxEC2 using the nondominant knee extensors and nondominant elbow flexors, respectively. C/NU performed 30 MaxEC1 using the nondominant elbow flexors. C/NL performed 60 MaxEC1 using the dominant knee extensors. NU/NL and NL/NU performed MaxEC2 14 days after MacEC1. Dependent variables: Plasma creatine kinase(CK)activity, muscle soreness(DOMS), limb’s circumference(CIR), joint range of motion(ROM), maximal voluntary isometric contraction(MVC)torque, maximal isokinetic concentric strength(ISOK), acoustic radiation force impulse(ARFI)and joint release angle(JRA)were measured before MaxEC1, immediately after MaxEC2, and Days 1–5 after MaxEC2 (every 24 hours). A two-way mixed-design analysis of variance was performed to test whether significant differences occurred between each group in the dependent variables over time.Results: NU/NL showed faster recovery for CK, DOMS, ROM, JRA, MVC, ISOK, and ARFI compared with C/NL. NL/NU exhibited faster recovery for all dependent variables compared with C/NU. The DOMS of NU/NL and C/NL differed significantly on Day 2 after MaxEC2 (p< .05); their MVC differed significantly on Days 0–2 after MaxEC2 (p < .05); their ISOK differed significantly on Days 0–2 after MaxEC2 (p < .05); their JRA45° and JRA60° differed significantly on Day 3 after MaxEC2 (p < .05); and their CK differed significantly on Days 1 and 2 after MaxEC2 (p < .05). The ROM of NL/NU and C/NU differed significantly on Days 3–5 after MaxEC2 (p < .05); their ARFI differed significantly on Days 0–2 after MaxEC2 (p < .05); their MVC differed significantly on Days 0, 1, and 4 after MaxEC2 (p< .05); their ISOK differed significantly on Days 0–5 after MaxEC2 (p < .05); and their CK differed significantly on Days 1 and 2 after MaxEC2 (p < .05).Conclusions: This study found that intervening in the MaxEC1 of the elbow flexors or knee extensors may reduce the muscle damage caused by the MaxEC2 of the same-side heterologous muscle group. Thus, the results of the present study may have provided useful information to coaches, athletic trainers, and physical therapists in the future as a reference and application for athletes in clinical rehabilitation treatment.重複訓練交叉轉移效應離心運動本體感覺聲輻射力脈衝彈性影像肌酸激酶contralateral repeated bout effecteccentric exerciseproprioceptionacoustic radiation force impulsecreatine kinase肘屈肌群和膝伸肌群間之同側重複訓練交叉轉移效應Contralateral Repeated Bout Effect between Elbow Flexors and Knee Extensorsetd