李忠謀Greg C. Lee李鈺新li-Yu-Sin2019-09-052019-8-122019-09-052014http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060147030S%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/106598人臉辨識是電腦視覺裡面一個重要的技術,近幾年由於身分認證,金融卡認證的需求日益增加,傳統的識別方法如密碼,身分證號碼存在可能的風險,而人臉辨識應用在智慧型手機上的需求更是日益漸增,像是身分認證,信用卡認證,手機解鎖,門禁管理,照片庫分類等等,而以手機上不同使用者登入來說,密碼以及圖形的輸入都存在著可以模仿的風險,所以生理特徵作為辨識的方法變得更為安全,也有其存在的必要性,現有的方法很多像是指紋,眼球虹膜,但在這些方法中,人臉辨識所需要的設備最為低價且最容易取得,也相對便宜。 本研究提出一個有效且快速的流程來辨識人臉,做為手機或平板電腦上的多使用者權限控管功能,亦可以應用到其他身分辨識的應用上,由於平板電腦的運算能力相對於一般電腦是較為薄弱的,所以本論文提出特徵擷取運算速度較快的noise-resilient LBP演算法,和特徵群聚法來解決平板電腦上記憶體不足的問題,研究方法共分成四個部分,一開始做人臉偵測找出人臉位置,再對該張人臉做影像前處理來克服不同光線的影響,提出noise-resilient LBP演算法進行特徵擷取,由於訓練集人臉特徵過多,因此本研究亦提出特徵群聚法來找出具有代表性的特徵,最後則是特徵距離相似度計算。Face recognition is one of the important computer vision technology. Face recognition has many possible use, including classification of photos, unlocking/opening of doors, and factory access control. In this research, we proposed a real-time face recognition system for unlocking mobile phones/tablets and for granting access rights to the apps in the phone. Since smartphones and tablets have less computing power and computing resource as a computer, the published face recognition algorithm will not meet the real-time usage requirement. In this research, a fast noise-resilient LBP algorithm is proposed. The recognition procedure has four parts: first, localization of a human face; second, pre-processing of the localized face to reduce the uneven light source effect; third, the proposed noise-resilient LBP algorithm is used for feature extraction; and fourthly, feature clustering is performed to reduced the feature space. The experiments show that the proposed method is effective for real-time recognition of faces for up to 50 registered users in a mobile phone or tablet.人臉偵測人臉辨識認證系統Face detectionFace recognitionAuthentication system基於智慧型裝置之多使用者即時人臉辨識及權限控管研究Real-time Face Recognition for Multi-user Authentication on Smartphones