黃聰明Tsung-Ming Huang陳俞廷Yu-Ting Chen2019-09-052014-7-102019-09-052014http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060040008S%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101691在本文中,主要測試周道積分法(Contour integral)\cite {S2}的效能,測試並歸納出一些較好的使用原則。我們以此方法針對三維光子晶體的馬克斯威爾方程(Maxwell equation)取時諧波(time harmonic)後經過K. Yee的離散化程序\cite{T1}得到的廣義特徵值問題作效能的測試,觀察各參數間的交互作用,並且將其與E. Polizzi的FEAST\cite{E1,E2,E3}結合而提出了混合型的演算法。最後對這混合型的演算法與傳統的Lanczos作效能上的比較。文中的三維光子晶體馬克斯威爾方程包含兩種情形分別為簡易立方晶格(SC,Simple Cube)和面心立方晶格(FCC,Face Centered cube),並分為是否除去零空間(null space free)的兩種情況,於理論部分僅提供較簡易的簡易立方晶格的介紹,而我們的數值結果則著重於應用較廣的面心立方晶格。In this papper, we consider to solve general eigenvalue problem for three dimensional photonic crystal by contour integral, and focus on the solver's efficacy. At first, we take the time harmonic for three dimensional photonic crystal's Maxwell equation , and Discrete by Yee's scheme,then test the parameter for the sovler. We explain the implications of parameter for CIRR,and compare it with FEAST.After all, We propose a hybrid solver MLCIRR, it Combine CIRR and FEAST.特徵值問題週道積分三維光子晶體平行運算general eigenvalue problemcontour integralthree dimensional photonic crystalparallel computing以周道積分解三維光子晶體之廣義特徵值問題Solve three dimensional photonic crystal general eigenvalue problem by contour integral