胡淑芬Shu-Fen Hu涂嘉良Jia-Liang Tu2019-09-052019-8-262019-09-052014http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN060141034S%22.&%22.id.&http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/102589可攜式電子產品於我們日常生活中漸漸扮演不可或缺之角色。現今隨著穿戴式裝置之使用量不斷劇增,可穩定提供電源之儲能材料被視為發展之重點,其中傳統鋰離子二次電池仍具有漏液及封裝上之限制,為了克服上述安全問題,且全固態鋰離子二次電池具備高能量密度及可撓式產品之應用等優點,因而深具取代傳統鋰離子二次電池之潛力。 本研究主要為製作與分析全固態鋰離子二次薄膜電池,其中以可撓式雲母片(Mica)作為基板,以射頻磁控濺鍍技術製備鋰鈷氧化物(lithium cobalt oxide; LiCoO2)為陰極材料,與鋰磷氧氮化物(lithium phosphorous oxynitride; LiPON)為固態電解質,依序沉積於以白金為電流收集器之雲母基板表面,進而再以熱蒸鍍技術沉積鋰金屬作為陽極薄膜即可完成電池組裝。 本研究乃探討不同熱退火溫度對於LiCoO2薄膜材料之影響與不同濺鍍環境之壓力對於LiPON薄膜材料之影響,並建立其最佳電化學表現。其中以粉末x光繞射儀(x-ray diffraction; XRD)鑑定樣品之晶相及其結晶度;以掃描式電子顯微鏡(scanning electron microscope; SEM)觀測樣品表面形貌與;並以x光電子能譜(x-ray photoelectron spectroscopy; XPS)分別量測樣品之電化學組成;此外利用交流阻抗測試計算電解質之離子導電度,並配合充放電儀研究材料之電容量與電化學循環表現。經上述鑑定發現經520℃後退火之LiCoO2薄膜為(101)晶面優選方向,充放電過程其鋰離子於晶格中擴散不受氧離子層阻擋之優勢,此外於5 mtorr條件下製備之LiPON薄膜具高含量之三重鍵結氮,且表面形貌及製程穩定性較高,其電解質薄膜之離子導電度可高達1.6×10-6 S/cm。以最佳濺鍍製程參數依序沉積於以白金為電流收集器之雲母基板表面,最後以熱蒸鍍技術沉積鋰金屬作為陽極薄膜即可完成全電池組裝,並實際使全電池以藍光LED作測試,並確實可以點亮藍光LED。Portable electronic products play important roles in our daily life. With the amount of wearable devices is nowadays rapidly growing, a stable supply of energy storage material is regarded as the focus of development. Therefore, developing stable energy-storage materials is a significant task. Because of high energy density and long cycle life in all-solid-state thin film batteries, they can serve as the major candidates to replace the conventional lithium ion batteries. The purposes of this research are to fabricate and analyze all-solid-state lithium ion thin film batteries. First, we use bendable material Mica to be substrate, and deposited lithium cobalt oxide (LiCoO2) as cathode material and lithium phosphorus oxynitride (LiPON) to be solid electrolyte on substrate with Pt current collector by RF magnetic sputtering technique. And then we prepared lithium metal as anode material by thermal evaporation to complete the fabrication of the batteries. The various annealing conditions were revealed to discuss the effects on the LiCoO2 thin film materials, and various sputtering pressures were revealed to discuss the effects on the LiPON thin film materials, and set up the best electrochemical performance of them. The crystal structure and crystallization were characterized by x-ray diffraction (XRD). The morphology and deposition rate were analyzed by scanning electron microscope (SEM). x-ray absorption spectroscopy (XAS) and x-ray photoelectron spectroscopy (XPS) were used to observe the oxidation states and the coordination conditions. The ion conductivity of solid electrolyte was calculated by performing the electrochemical impedance spectroscopy (EIS), and the capacity and the cycle life of electrodes were measured by the capacity tester. Under these characterizations could discover that the LiCoO2 thin film was (101) preferred orientation after post-annealing. As a result, it could avoid the diffusion of lithium ions from the oxygen layer blocking. In addition, there was more triply coordinated nitrogen in the LiPON thin film under 5 mtorr fabricating factors. The ionic conductivity could reach 1.6×10-6 S/cm. Finally, deposited lithium metal as the anode thin film deposition by thermal evaporation technique to complete the whole battery pack. And use blue LED for testing, and indeed can lightening the blue LED.鋰離子二次電池可饒式鋰鈷氧化物氮化磷酸鋰濺鍍雲母Lithium-ion secondary batteryBendableLiCoO2LiPONSputterMica可撓式全固態鋰離子二次電池之製作及特性分析Fabrication and Characteristics of Bendable All Solid-state Lithium-ion Secondary Batteries