氧化石墨烯的電能還原技術開發

dc.contributor楊啟榮zh_TW
dc.contributor曾釋鋒zh_TW
dc.contributorYang, Chi-Rongen_US
dc.contributorTseng, Shih-Fengen_US
dc.contributor.author陳昱廷zh_TW
dc.contributor.authorChen, Yu-Tingen_US
dc.date.accessioned2019-09-03T12:09:17Z
dc.date.available2021-06-30
dc.date.available2019-09-03T12:09:17Z
dc.date.issued2016
dc.description.abstract本研究提出一個新穎的方法,使用電能來還原氧化石墨烯,其中電能包含了電弧放電與常壓電漿兩種方法,兩種方法均具備了升溫快速、高能量等特性,適合應用於還原氧化石墨烯。首先,本研究以Improved Hummers method製備氧化石墨烯,所製備出的氧化石墨烯其ID/IG之比值為0.77,C/O為0.232,電阻值為280 MΩ,並將自製之氧化石墨烯,分別製備出粉末、分散液及薄膜形式,再以電弧與電漿分別進行實驗,使用拉曼、電性、比表面積及XPS評估其特性,最後與UV雷射所還原之氧化石墨烯納入比較。本研究在進行電弧放電的實驗中,發現有儀器性能上的限制,導致還原成效不彰,因此將實驗重心移至常壓電漿還原實驗。透過常壓電漿系統,成功還原氧化石墨烯,氧化石墨烯薄膜在處理時間為2小時的情況下,其電阻值由280 MΩ下降至1657 Ω,電性明顯的提升,I2D/IG之比值由0增加至0.05,此外,將石英玻璃作為遮蔽物使用於還原實驗中,因薄膜的完整性大幅提升,因此電阻值在處理時間為2小時的情況下,由1657 Ω下降至141 Ω,I2D/IG之比值提升至0.3,還原的效果十分良好。實驗結果顯示,電漿還原後觀察氧化石墨烯其電性的提升,證明確實具有還原之成效,結合石英玻璃作為遮蔽物進行電漿處理,更能大幅改善其電性。zh_TW
dc.description.abstractIn this study, we present a novel method that uses electric energy to turn graphene oxide into reduced grpahene oxide. The electric energy which contains the arc discharge and atmospheric plasma two methods, both methods have an advantage of rapid heating, high energy and other characteristics. It is suitable for reduce graphene oxide. First, we used the present study Improved Hummers method for preparing graphene oxide. the graphene oxide prepared ID ratio IG is 0.77, carbon to oxygen ratio is 0.232, and the resistance is 280 MΩ. Moreover, the homemade of graphene oxide was prepared for powders, dispersions and film form, respectively. Then the arc discharge and plasma were conducted to experiments. Finally, it will used Raman, electrical resistance, specific surface area and XPS analysis to estimate its characteristics. In the end, it will be compared with reduction effect which is using UV laser to reduce. This study has faced some critical problems during arc discharge experiments. Due to the performance restrictions of instrument can’t be improved. So the resulting of reduction isn’t very effective. Hence, the experiment will focus to the plasma experiments. Through the atmospheric plasma system, it is successfully restored graphene oxide, graphene oxide film under two hours processes time in the case, the resistance value decreased from 280 MΩ to 1657 Ω. The electrically improved significantly, the I2D ratio IG increase from 0 to 0.05. Besides, quartz glass as shelter has used in the reducing experiment, because the integrity of the film is significantly improved. The resistance value decreased from 1657 Ω to 141 Ω. I2D ratio IG increased to 0.3, the reduction of the effect is very good. Experimental results show that electrical properties of reduced graphene oxide is better than GO after plasma treatment, has indeed proved it contains reduction effect. If we combined quartz glass as a shelter with plasma experiment, it will more significantly improve its electrical properties.en_US
dc.description.sponsorship機電工程學系zh_TW
dc.identifierG060273030H
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060273030H%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/97009
dc.language中文
dc.subject石墨烯zh_TW
dc.subject氧化石墨烯zh_TW
dc.subject電漿還原技術zh_TW
dc.subjectGrapheneen_US
dc.subjectGraphene oxideen_US
dc.subjectPlasma reduction technologyen_US
dc.title氧化石墨烯的電能還原技術開發zh_TW
dc.titleReduced techniques of graphene oxide developed using electric energyen_US

Files

Collections