Nonlinear system identification using delta learning-based gaussian-hopfield networks

dc.contributor國立臺灣師範大學電機工程學系zh_tw
dc.contributor.authorC.-C. Chenen_US
dc.contributor.authorW.-Y. Wangen_US
dc.date.accessioned2014-10-30T09:28:23Z
dc.date.available2014-10-30T09:28:23Z
dc.date.issued2004-01-01zh_TW
dc.description.abstract本論文針對非線性離散時間系統,提出一種以最徒負梯度法則為基礎之高斯-霍普菲爾類神經網路之新驗證方法。並藉由兩種不同的離散時間模型來描述此單輸入單輸出之非線性離散時間系統。而此等效非線性系統模型之非線性部份可用以相關聯之輸入及輸出組成的非線性函數來等效之。我們用高斯基組函數去代表? 一個非線性離散時間系統模型之非線性函數,以最徒負梯度法則去訓練一組高斯基組函數之係數並使其最佳化。最後以模擬結果來驗證此方法之逼近效能。zh_tw
dc.description.abstractThis study proposes a new verifying method of Gaussian-Hopfield neural networks (GHNNs) based on Delta-learning rules in the light of the discrete-time nonlinear system, and describes the discrete-time nonlinear system of Single-Input-Single-Output (SISO) with two different discrete-time models. The nonlinear part of the equivalent nonlinear system can be equaled with related input and output nonlinear functions. In the paper, Gaussian basis functions (GBFs) was used to represent the nonlinear function of a discrete-time nonlinear system and optimize the GBFs by training it with Delta-learning rules. Finally, the simulation results were used to verify the approach effect.en_US
dc.description.urihttp://www.jwsh.tp.edu.tw/pages/jwsh/ttworks/folder/chen.pdfzh_TW
dc.identifierntnulib_tp_E0604_02_065zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/32042
dc.languageenzh_TW
dc.relationNCC, 2004,頁249-254en_US
dc.subject.other非線性離散時間系統zh_tw
dc.subject.other霍普菲爾類神經網路zh_tw
dc.subject.other高斯基組函數zh_tw
dc.subject.other最徒負梯度法則zh_tw
dc.subject.othernonlinear discrete-time systemsen_US
dc.subject.otherHopfield neural networks (HNNs)en_US
dc.subject.otherGaussian basis functions (GBFs)en_US
dc.subject.otherdelta learning rules.en_US
dc.titleNonlinear system identification using delta learning-based gaussian-hopfield networksen_US

Files

Collections