矽膠基氮化鋁/石墨烯複合導熱膠材之開發
No Thumbnail Available
Date
2017
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
近年來在電子產品尺寸比例不斷縮小卻仍需達到良好工作性能的趨勢下,電子產品對於散熱系統的效能要求也越來越嚴苛,可以預期散熱元件在電子資訊產品中所扮演的角色也將愈來愈重要。熱界面材料(Thermal interface materials, TIM)是目前被廣泛應用於IC封裝及電子散熱的複合材料,通常以高分子膠體基質及具有高導熱性質的陶瓷填充顆粒組成,而目前文獻或是專利,主要都透過填充顆粒表面改質技術以及於導熱膠材內部建立更強的協同效應,來改善熱界面材料的導熱特性。本研究提出大氣電漿(Atmospheric plasma, APP)表面改質技術,對填充材料進行改質,其具有低時間成本、對環境友善等優點,並且更能提升熱界面材料熱傳導係數,故具有高度應用的潛力。本研究也以傅立葉紅外光譜儀(Fourier transform infared spectrometer, FTIR)及拉曼光譜分析儀(Raman spectroscope),確認大氣電漿改質效果後,添加適當重量百分比例的奈米碳材,能與氮化鋁顆粒在導熱膠材內部建立協同效應(Synergetic effect),進而使所製備的熱界面材料能有更好的熱傳導效果。本研究添加經大氣電漿改質過後的材料,60 wt%的球型氮化鋁粉末、2 wt%的多壁奈米碳管及2 wt%的寡層石墨烯,透過行星式脫泡攪拌機(Planetary degassing mixer)與高分子膠體基質進行充分混拌,並以「半熟成技術(Semi-curing)」製作導熱膠片後,以符合國際規範ASTM D5470的穩態量測機台,熱傳導係數已證實達7.02 W/mK。再透過黏度計及熱重分析儀(Thermogravimetric analysis, TGA)測試,已知該導熱膠材具有黏度335 Pa·sec,及熱裂解溫度達391.36 ℃的性能表現。
關鍵詞:熱界面材料、氮化鋁、石墨烯、多壁奈米碳管、協同效應、半熟成技術、熱傳導係數
In this study, we used atmospheric plasma (APP system) to modified the particles of alumina nitride (AlN) and graphene platelets. Then the modified materials will be added into polydimethylsiloxane (PDMS). After vacuum degassing mixer mixing, aluminum nitride particles would achieve uniformity among PDMS. In this thermal grease, the graphene platelets and the modified aluminum nitride particles had the synergistic effect. The filler of the aluminum nitride particles produced a array structure in the PDMS, so it could avoid aggregation phenomenon of graphene, reduce the thermal boundary resistance, and improve heat transfer characteristics in thermal grease. The present study of 60 wt% of using atmospheric plasma modified alumina nitride particles and 4 wt% of carbon materials in PDMS have the thermal conductivity coefficient of 7.02 W/mk. The thermal conductivity is 70 times of pure PDMS. KEYWORDS: thermal grease, atmospheric plasma, alumina nitride, graphene, synergetic effect
In this study, we used atmospheric plasma (APP system) to modified the particles of alumina nitride (AlN) and graphene platelets. Then the modified materials will be added into polydimethylsiloxane (PDMS). After vacuum degassing mixer mixing, aluminum nitride particles would achieve uniformity among PDMS. In this thermal grease, the graphene platelets and the modified aluminum nitride particles had the synergistic effect. The filler of the aluminum nitride particles produced a array structure in the PDMS, so it could avoid aggregation phenomenon of graphene, reduce the thermal boundary resistance, and improve heat transfer characteristics in thermal grease. The present study of 60 wt% of using atmospheric plasma modified alumina nitride particles and 4 wt% of carbon materials in PDMS have the thermal conductivity coefficient of 7.02 W/mk. The thermal conductivity is 70 times of pure PDMS. KEYWORDS: thermal grease, atmospheric plasma, alumina nitride, graphene, synergetic effect
Description
Keywords
熱界面材料, 氮化鋁, 石墨烯, 多壁奈米碳管, 協同效應, 半熟成技術, 熱傳導係數, thermal grease, atmospheric plasma, alumina nitride, graphene, synergetic effect