Constructing a novel Chinese readability classification model using principal component analysis and genetic programming

dc.contributor國立臺灣師範大學教育心理與輔導學系zh_tw
dc.contributor.authorLee, Y. S.en_US
dc.contributor.authorTseng, H. C.en_US
dc.contributor.authorChen, J. L.en_US
dc.contributor.authorPeng, C. Y.en_US
dc.contributor.authorChang, T. H.en_US
dc.contributor.authorSung, Y. T.en_US
dc.date.accessioned2014-12-02T06:38:54Z
dc.date.available2014-12-02T06:38:54Z
dc.date.issued2012-07-06zh_TW
dc.description.abstractThe studies of readability aim to measure the level of text difficulty. Although traditional formulae such as the Flesch-Kincaid formula can properly predict text readability, they are only effective for English text. Other formulae with very few features may result in inaccurate text classification. The study takes into account multiple linguistic features, and attempts to increase the level of accuracy in text classification by adopting a new model which integrates Principal Component Analysis (PCA) with Genetic Programming (GP). Empirical data are used to demonstrate the performance of the proposed model.en_US
dc.identifierntnulib_tp_A0201_02_051zh_TW
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/40789
dc.languageen_USzh_TW
dc.relation12th IEEE International Conference on Advanced Learning Technologies (ICALT), Rome, Italy.en_US
dc.relation.urihttp://dx.doi.org/10.1109/ICALT.2012.134zh_TW
dc.subject.othergenetic algorithmsen_US
dc.subject.othergenetic programmingen_US
dc.subject.othernatural language processingen_US
dc.subject.otherpattern classificationen_US
dc.subject.otherprincipal component analysisen_US
dc.subject.othertext analysisen_US
dc.subject.otherEnglish texten_US
dc.subject.otherFlesch-Kincaid formulaen_US
dc.subject.otherGPen_US
dc.subject.otherPCAen_US
dc.subject.othermultiple linguistic featuresen_US
dc.subject.othernovel Chinese readability classification modelen_US
dc.subject.otherprincipal component analysisen_US
dc.subject.othertext classificationen_US
dc.subject.othertext readabilityen_US
dc.subject.otherEducational institutionsen_US
dc.subject.otherMathematical modelen_US
dc.subject.otherPredictive modelsen_US
dc.subject.otherPrincipal component analysisen_US
dc.subject.otherPsychologyen_US
dc.subject.otherSupport vector machinesen_US
dc.subject.otherPrincipal component analysisen_US
dc.subject.otherReadabilityen_US
dc.subject.otherText analysis componenten_US
dc.titleConstructing a novel Chinese readability classification model using principal component analysis and genetic programmingen_US

Files

Collections