數學計算可交換性益智玩具的最少步數

 dc.contributor 郭君逸 zh_TW dc.contributor Guo, Jun-Yi en_US dc.contributor.author 林哲侃 zh_TW dc.contributor.author Lin, Tse-Kan en_US dc.date.accessioned 2019-09-05T01:05:48Z dc.date.available 2016-07-18 dc.date.available 2019-09-05T01:05:48Z dc.date.issued 2016 dc.description.abstract 這篇論文的主旨是要描述點燈遊戲，及其他類可交換性益智玩具的最佳解。在1998年，Anderson與Feil用線性代數找出了點燈遊戲的解法。2009年，Goldwasser等人證明了點燈遊戲在只能按亮燈的限制下與一般遊戲的可解性並無不同。2014年，Schicho和Top進一步討論更多點燈遊戲的變形。這些結果都相當程度地仰賴電腦運算。在這篇論文中，我們試著用純數學方法去找出最佳解的上界，並給出上界的估計公式。 zh_TW dc.description.abstract The main purpose of this paper is to describe the optimal solution of Lights Out games and other similar commutative puzzles. In 1998, Anderson and Feil used Linear Algebra to find a solution method for Lights Out games. In 2009, Goldwasser et al. proved the lit-only restriction is not different for the sigma game. In 2014, Schicho and Top discussed many variation of Lights Out. Those results heavily rely on computer. In this paper, we use mathematical methods to find an upper bound of minimal solutions, and furthermore, give an estimation algorithm to the upper bound. en_US dc.description.sponsorship 數學系 zh_TW dc.identifier G060340001S dc.identifier.uri http://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060340001S%22.&%22.id.& dc.identifier.uri http://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101538 dc.language 英文 dc.subject 點燈遊戲 zh_TW dc.subject Lights Out en_US dc.subject commutative puzzles en_US dc.title 數學計算可交換性益智玩具的最少步數 zh_TW dc.title Calculating the Upper Bounds of the Commutative Puzzles in Mathematics en_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
060340001s01.pdf
Size:
4.52 MB
Format: