數學計算可交換性益智玩具的最少步數

dc.contributor郭君逸zh_TW
dc.contributorGuo, Jun-Yien_US
dc.contributor.author林哲侃zh_TW
dc.contributor.authorLin, Tse-Kanen_US
dc.date.accessioned2019-09-05T01:05:48Z
dc.date.available2016-07-18
dc.date.available2019-09-05T01:05:48Z
dc.date.issued2016
dc.description.abstract這篇論文的主旨是要描述點燈遊戲,及其他類可交換性益智玩具的最佳解。在1998年,Anderson與Feil用線性代數找出了點燈遊戲的解法。2009年,Goldwasser等人證明了點燈遊戲在只能按亮燈的限制下與一般遊戲的可解性並無不同。2014年,Schicho和Top進一步討論更多點燈遊戲的變形。這些結果都相當程度地仰賴電腦運算。在這篇論文中,我們試著用純數學方法去找出最佳解的上界,並給出上界的估計公式。zh_TW
dc.description.abstractThe main purpose of this paper is to describe the optimal solution of Lights Out games and other similar commutative puzzles. In 1998, Anderson and Feil used Linear Algebra to find a solution method for Lights Out games. In 2009, Goldwasser et al. proved the lit-only restriction is not different for the sigma game. In 2014, Schicho and Top discussed many variation of Lights Out. Those results heavily rely on computer. In this paper, we use mathematical methods to find an upper bound of minimal solutions, and furthermore, give an estimation algorithm to the upper bound.en_US
dc.description.sponsorship數學系zh_TW
dc.identifierG060340001S
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G060340001S%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/101538
dc.language英文
dc.subject點燈遊戲zh_TW
dc.subjectLights Outen_US
dc.subjectcommutative puzzlesen_US
dc.title數學計算可交換性益智玩具的最少步數zh_TW
dc.titleCalculating the Upper Bounds of the Commutative Puzzles in Mathematicsen_US

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
060340001s01.pdf
Size:
4.52 MB
Format:
Adobe Portable Document Format

Collections