應用運動回復結構技術建立機器手臂夾取點與三維物體模型

No Thumbnail Available

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

本研究主要目標是利用多張二維影像重建三維物件模型後,判斷物體的 型態描述,並決定適當夾取點的位置。一般得到立體影像研究所使用的方法 大多為非接觸式系統中的雙眼視覺法,此法模擬人類雙眼,藉由視差推算物 體和攝影機之間的深度資訊用於靜態物件追蹤上,不過此方法限用於靜態物 體上,如果攝影機放置在動態的機器手臂或者是移動中的汽車上。則前人的 立體視覺法無法立即作三維重建模型。為了解決此方法,我們使用運動恢復 結構,找出連續動態拍攝的影像中,每個影像的相機關係性,並且重建出三 維模型,讓機器手臂可以判定適當的夾取點位置。 利用單眼視覺系統搭配Harris 轉角偵測方法進行影像中特徵的偵測,並依 據影像訊息求算特徵在空間中三維座標,並實現單眼視覺系統在運動恢復結 構(structure from motion)的三維模型建構。 本研究之三維建模採用三個步驟,首先將影像中的特徵點萃取出來,接著 計算出連續影像中各個物件和原始的影像差異性,並追蹤特徵點,最後利用 矩陣分解法,解出物體隱含在虛擬三維座標空間的座標,並用點雲圖呈現出 來。
This research’s object is used multi-view image rebuild 3D model, and then we use the 3D model detect the stable grasp position. Normally in stereo machine vision research, use binocular vision method is more popular. This method is likely our eyes, use disparity to calculate depth signal between camera and object. But this method can only use on static image, if camera is putted on robot manipulator or moving car. The past method will fail to reconstruction 3D model. So in this research we will use structure from motion to find the relationship between origin cameras to another from sequence images. And we will reconstruction 3D model. We use mono-camera get the image, and use Harris corner detector to find the keypoints. This research have 3 parts process, first extract the feature from images, and calculate the sequence images, tracking keypoints, Final we use Factorization method to get the camera and object’s relationship from 3D coordination.

Description

Keywords

立體視覺法, 三維重建, 夾取點分析, 3D model building, shape description, structure from motion

Citation

Collections