SVG向量圖形資訊隱藏之研究

Abstract

由於網際網路的快速成長,對於保護影像智慧財產權(Intellectual Property Rights, IPR)的需求與日遽增。影像資訊隱藏(Information Hiding)於數位內容典藏 (Digital Content Archives)的應用已有多年的發展,但關於可變動向量圖形(Scaleable Vector Graphic, SVG)智慧財產權的保護機制,尚處於萌芽階段。並且因其圖形格式是以明文(Plain Text)方式存在,更增加了保護的難度。 有鑑於此,本研究提出了兩種資訊隱藏模型於可變動向量圖形保護上,分別為資訊融入法(Information Mixture)與資訊附加法(Information Add-On)。其具有下列四個特點: (1) 利用明文加密的技術來隱藏資訊,讓合法使用者能驗證資訊 (2) 結合Unicode編碼方式,提供亞洲字元驗證資訊的能力 (3) 利用偽裝標籤來達到資訊隱藏的目的 (4) 結合公鑰基礎建設(Public Key Infrastructure, PKI)與Client-Server架構,提供一針對可變動向量圖形線上智慧財產權的保護機制。此外加密後的可變動向量圖形與原始檔案,於瀏覽器端的顯示完全一致,並且速度上無太大差異。
With the rapid growing popularity of the World Wide Web (WWW), the need of Intellectual Property Rights (IPR) for images is becoming steadily on the increase. The application of Image Information Hiding for Digital Content Archives has been developed for many years, but development of protecting mechanism for the IPR of Scaleable Vector Graphic (SVG) is just the beginnings. Since the format of SVG files is stored in the Plain Text type, the degree of difficuty in protecting files is getting higher. Based on these facts, in the study, we propose two Information Hiding models for protection on SVG, the Information Mixture and the Information Add-On, respectively. The two models have the following four features. (1) The legal user can verify the information by the encrypted techniques of the plain-text. (2) Providing the ability to verify the information in Asia characters by combining the Unicode encoding. (3) Achieving the objective of Information Hiding by adding the camouflage tag. (4) Providing the mechanism of online protection of IPR by combining the public key infrastructure (PKI) and Client-Server architecture. In addition, between the original SVG file and the SVG file of hiding authenticated information, the visual perception is consistent and the execution speed is almost the same.

Description

Keywords

資訊融入法, 資訊附加法, 可變動向量圖形, 資訊安全, 資訊隱藏, Information Mixture, Information Add-On, Scaleable Vector Graphics, Information Security, Information Hiding

Citation

Collections