基於強化學習結合KAN網路和注意力機制的創新混合架構應用於多機器人避障系統
| dc.contributor | 陳美勇 | zh_TW |
| dc.contributor | Chen, Mei-Yung | en_US |
| dc.contributor.author | 姜嵐新 | zh_TW |
| dc.contributor.author | Jiang, Lan-Shin | en_US |
| dc.date.accessioned | 2025-12-09T08:06:09Z | |
| dc.date.available | 2025-08-01 | |
| dc.date.issued | 2025 | |
| dc.description.abstract | 本研究提出一種結合 Kolmogorov-Arnold Network(KAN)與多層感知器(Multi-layer Perceptron , MLP)的創新架構,用於解決多機器人系統中的避障問題。隨著機器人技術的發展,多機器人系統在複雜環境中的運作日益普及,有效的避障策略成為確保系統安全與高效運作的關鍵。本研究設計了一種整合卷積神經網路(Convolutional Neural Network , CNN)、注意力機制(Attention)與 KAN 的混合架構,結合近端策略優化(Proximal Policy Optimization , PPO)算法進行強化學習訓練。實驗結果表明,與傳統的 CNN-MLP 架構相比,所提出的 CNN_ATT_MLP_KAN-PPO 架構在參數效率、學習效率和泛化能力方面均具有顯著優勢,特別適用於複雜環境和大規模多機器人系統。研究結果不僅驗證了 KAN 網路在實際應用中的價值,也為多機器人協作系統的發展提供了新的技術路徑。 | zh_TW |
| dc.description.abstract | This research proposes an innovative architecture combining Kolmogorov-Arnold Network (KAN) with Multi-layer Perceptron (MLP) to solve obstacle avoidance problems in multi-robot systems. As robotics technology advances, the operation of multi-robot systems in complex environments is becoming increasingly common, making effective obstacle avoidance strategies crucial for ensuring system safety and operational efficiency. This study designs a hybrid architecture integrating Convolutional Neural Networks (CNN), Attention mechanisms, and KAN, combined with the Proximal Policy Optimization (PPO) algorithm for reinforcement learning training. Experimental results demonstrate that the proposed CNN_ATT_MLP_KAN-PPO architecture shows significant advantages in parameter efficiency, learning efficiency, and generalization capability compared to traditional CNN-MLP architectures, particularly suitable for complex environments and large-scale multi-robot systems. The research findings not only validate the value of KAN networks in practical applications but also provide new technical pathways for the development of multi-robot collaborative systems. | en_US |
| dc.description.sponsorship | 機電工程學系 | zh_TW |
| dc.identifier | 61373030H-47855 | |
| dc.identifier.uri | https://etds.lib.ntnu.edu.tw/thesis/detail/34114ec9dfbc12adb9d0a54b0bbf6e14/ | |
| dc.identifier.uri | http://rportal.lib.ntnu.edu.tw/handle/20.500.12235/125224 | |
| dc.language | 中文 | |
| dc.subject | 多機器人避障 | zh_TW |
| dc.subject | Kolmogorov-Arnold Network | zh_TW |
| dc.subject | 注意力機制 | zh_TW |
| dc.subject | 近端策略優化 | zh_TW |
| dc.subject | Multi-robot obstacle avoidance | en_US |
| dc.subject | Kolmogorov-Arnold Network | en_US |
| dc.subject | Attention mechanism | en_US |
| dc.subject | Proximal Policy Optimization | en_US |
| dc.title | 基於強化學習結合KAN網路和注意力機制的創新混合架構應用於多機器人避障系統 | zh_TW |
| dc.title | An Innovative Hybrid Architecture Based on Reinforcement Learning Combined with KAN Networks and Attention Mechanisms for Multi-Robot Obstacle Avoidance Systems | en_US |
| dc.type | 學術論文 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 202500047855-110156.pdf
- Size:
- 2.1 MB
- Format:
- Adobe Portable Document Format
- Description:
- 學術論文