應用潛在語意分析於試題相似度比較之可行性

dc.contributor何榮桂zh_TW
dc.contributor.author陳彥霖zh_TW
dc.contributor.authorChen, Yan-Linen_US
dc.date.accessioned2019-08-29T07:53:22Z
dc.date.available2007-8-19
dc.date.available2019-08-29T07:53:22Z
dc.date.issued2006
dc.description.abstract本研究旨在應用潛在語意分析(Latent semantic analysis,LSA)模型於試題相似度之判斷,並探討不同的評分函式對於結果的影響,同時根據試題關鍵字的特性,與LSA模型處理詞彙共現(Lexically Co-occur)的特性,提出訓練文件可採用相關文件來提高判斷的精確率。研究結果使用dice或內積為評分函式較接近專家評鑑結果,對於專家相似度評鑑比較一致的試題,有高達0.9的相關程度,而平均相關值也有0.7以上的相關程度,因此潛在語意分析應用於試題相似度是可行的技術。zh_TW
dc.description.abstractThe purpose of this study is to apply latent semantic analysis (LSA) to analyze item similarity , and discuss the result of using different score function. The feature of LSA model is “Lexically Co-occur” detection , in other words, LSA model can analyze many documents, and find synonyms , but synonyms rarely exist in the same item , so LSA model needs to be trained by documents which are related to this item . This study revealed that the result using dice measure or inner product measure correlates more closely with expert’s scores. For the items which is more agreeable of expert’s scores than others , the maximum correlation is up to 0.9, and the mean of correlation is up to 0.7, so applying latent semantic analysis to analyze item similarity is a feasible technology.en_US
dc.description.sponsorship資訊教育研究所zh_TW
dc.identifierGN0692080359
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0692080359%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/92892
dc.language中文
dc.subject潛在語意分析zh_TW
dc.subject試題相似zh_TW
dc.subject評分函式zh_TW
dc.subjectLSAzh_TW
dc.subjectlatent semantic analysisen_US
dc.subjectItem similarityen_US
dc.subjectscore functionen_US
dc.subjectLSAen_US
dc.title應用潛在語意分析於試題相似度比較之可行性zh_TW
dc.titleThe feasibility of applying Latent Semantic Analysis to analyze Item similarityen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069208035901.pdf
Size:
933.9 KB
Format:
Adobe Portable Document Format

Collections