藉由溶液 -固體 -固體法催化單源先驅物合成硫化鋅及鎘奈米線
No Thumbnail Available
Date
2016
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
本研究以「溶液-固體-固體」法於低溫下,藉由固態硫化銀催化溶液態之單源先驅物,再以一步法反應優化並生長出II-VI 族之硫化鋅及硫化鎘半導體奈米線。我們以Zn(DDTC)2 及Cd(DDTC)2 等多硫錯合物鹽類,於100-200℃下引入銀源,除同步生長出硫化銀觸媒粒子及II-VI 族奈米線,並以紫外-可見光吸收光譜、粉末X 光繞射、穿透式電子顯微鏡、X 光吸收光譜等技術,觀察隨反應時間之奈米線生長情況。同時,利用兩相近大小之平面晶格距離,於不同半導體間以磊晶方式生長出硫化鎘-硫化鋅之異質奈米線結構,並測量其導電性之變化。這類II-VI 族半導體奈米線,於溶液中亦可使用中孔洞薄膜材料來限制固態觸媒大小,進而生長出具有方向性之半導體奈米線,以應用在能源轉換之奈米線元件上。
Here we rationally synthesize ZnS and CdS nanowires using single-sourceprecursors via solution-solid-solid (SSS) mechanism in a facile one-step synthesis. Sulfur-rich salt complexes, such as Zn(DDTC)2 and Cd(DDTC)2 were decomposed at 100-200 oC in oleylamine to grow silver sulfide catalysts and subsequently zinc/cadmium sulfide nanowires after an introduction of silver sources into the solution. The nanowires were characterized with UV-vis, PXRD, TEM/HRTEM and EXAFS techniques to reveal the growth mechanisms of the nanowires. Interfaces between CdS-ZnS hetero-semiconductor nanowires are realized by HRTEM and XRD, suggesting epitaxy growth from their close d-spacing in two adjacent semiconductors. Furthermore, we demonstrate growth of oriented nanowires from mesoporous thin film substrates, utilized to energy conversion devices with such oriented semiconductors.
Here we rationally synthesize ZnS and CdS nanowires using single-sourceprecursors via solution-solid-solid (SSS) mechanism in a facile one-step synthesis. Sulfur-rich salt complexes, such as Zn(DDTC)2 and Cd(DDTC)2 were decomposed at 100-200 oC in oleylamine to grow silver sulfide catalysts and subsequently zinc/cadmium sulfide nanowires after an introduction of silver sources into the solution. The nanowires were characterized with UV-vis, PXRD, TEM/HRTEM and EXAFS techniques to reveal the growth mechanisms of the nanowires. Interfaces between CdS-ZnS hetero-semiconductor nanowires are realized by HRTEM and XRD, suggesting epitaxy growth from their close d-spacing in two adjacent semiconductors. Furthermore, we demonstrate growth of oriented nanowires from mesoporous thin film substrates, utilized to energy conversion devices with such oriented semiconductors.
Description
Keywords
硫化銀催化, 單源先驅物, 磊晶生長方式, 異質奈米線, silver sulfide catalysts, single-source-precursors, epitaxy growth, hetero-semiconductor nanowires