基於強化型Morlet轉換、解調變頻譜、多尺度熵、多頻帶頻譜熵與決策樹之齒輪箱異常診斷系統

dc.contributor吳順德zh_TW
dc.contributor.author李易宗zh_TW
dc.date.accessioned2019-09-03T12:16:26Z
dc.date.available2012-8-22
dc.date.available2019-09-03T12:16:26Z
dc.date.issued2012
dc.description.abstract產業應用上,齒輪箱扮演著重要的角色;典型的齒輪異常,包含了:磨損、輪尺斷裂、動不平衡、缺乏潤滑等,嚴重的甚至會發生齒輪本身崩壞的情形。當齒輪出現故障,振動訊號可能被激發出異常的振動特性;因此,可藉由對振動訊號的分析,利用不同的訊號處理方法,達成齒輪箱的異常診斷。本論文提出一齒輪箱異常診斷系統,用以辨識齒輪箱的異常狀態情形。首先,使用解調變頻譜、影像熵、多尺度熵和多頻帶頻譜熵抽取出異常狀態之特徵;接著,利用抽取出之特徵建立一決策樹模型。本論文所使用的齒輪箱實驗資料來源,是工業技術研究院機械與系統研究所智慧系統技術組監控系統技術部所建置之齒輪箱實驗平台,並由作者親自進行所有的實驗以收集本論文所需之實驗資料。實驗結果顯示,訓練出的決策樹模型,對於測試使用的資料之異常診斷,具有高度的準確性。zh_TW
dc.description.abstractGearboxes play an important role in industrial applications. Typical faults of gears include pitting, chipping, imbalance, loss-of-lubrication and more seriously, crack. When a gear has a fault, the vibration signal may carry the signature of the fault in the gears. Therefore, fault detection of the gearbox is possible by analyzing the vibration signal by different signal processing algorithms. In this dissertation, we propose a gearbox fault diagnosis system to distinguish different fault types of the gearbox. Firstly, signatures of the gear faults were extracted by the demodulation spectrum, image entropy, multi-scale entropy (MSE) and multiband spectral entropy (MBSE). Secondly, these extracted signatures were used to build a decision tree (DT) based model. In our simulations, the vibration signal datasets of gearbox from Industrial Technology Research Institute (ITRI) are utilized. In experimental results, the trained DT models have shown high accuracy of fault detection and fault classification on the test set.en_US
dc.description.sponsorship機電工程學系zh_TW
dc.identifierGN0699730343
dc.identifier.urihttp://etds.lib.ntnu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22GN0699730343%22.&%22.id.&
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw:80/handle/20.500.12235/97276
dc.language中文
dc.subject齒輪箱zh_TW
dc.subject異常診斷系統zh_TW
dc.subject決策樹zh_TW
dc.subjectgearboxen_US
dc.subjectfault diagnosis systemen_US
dc.subjectdecision treeen_US
dc.title基於強化型Morlet轉換、解調變頻譜、多尺度熵、多頻帶頻譜熵與決策樹之齒輪箱異常診斷系統zh_TW
dc.titleA Gearbox Fault Diagnosis System Base on Enhanced Morlet Transform, Demodulation Spectrum, Multiscale Entropy, Multiband Spectrum Entropy and Decision Treeen_US

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
n069973034301.pdf
Size:
2.79 MB
Format:
Adobe Portable Document Format

Collections