基於多尺度熵與支持向量數據描述之軸承故障診斷系統

dc.contributor吳順德zh_TW
dc.contributorWu, Shuen-Deen_US
dc.contributor.author李旻祐zh_TW
dc.contributor.authorLee, Min-Yuen_US
dc.date.accessioned2022-06-08T02:46:48Z
dc.date.available2021-09-14
dc.date.available2022-06-08T02:46:48Z
dc.date.issued2021
dc.description.abstract對於各類迴轉機械來說,旋轉機械、齒輪箱、旋轉刀具等等各類元件容易因為長時間的震動與磨損,產生軸承運轉上的問題。並且,實際在工廠機台運作時,時常是沒有人手進行資料採集以及分類的。因此需要設計一套能夠前處理以及分類無標籤資料的系統。本研究提出了一個以多尺度熵進行特徵抽取,以複數尺度向量數據描述進行軸承振動訊號分析的系統。本研究使用IMS軸承資料庫進行測試,實驗結果能夠準確在軸承出現異常時迅速判斷,提醒使用者軸承出現損壞。並且以此方法,可以實現非監督學習,自行前處理並進行分析。zh_TW
dc.description.abstractFor all kinds of rotating machinery, rotating machinery, gearboxes, rotating tools and other components are prone to bearing operation problems due to long-term vibration and wear. In addition, in the actual operation of the factory machine, there is often no manpower for data collection and classification. Therefore, it is necessary to design a system that can pre-process and classify unlabeled data. This research proposes a system that uses multi-scale entropy for feature extraction and complex scale vector data to describe bearing vibration signal analysis. In this study, the IMS bearing database was used for testing. The experimental results can accurately determine when the bearing is abnormal and remind the user that the bearing is damaged. And in this way, unsupervised learning can be realized, pre-processing and analysis can be performed by itself.en_US
dc.description.sponsorship機電工程學系zh_TW
dc.identifier60773009H-40220
dc.identifier.urihttps://etds.lib.ntnu.edu.tw/thesis/detail/4f8bb7ccb9c7caba513d3bd236c2fc66/
dc.identifier.urihttp://rportal.lib.ntnu.edu.tw/handle/20.500.12235/117528
dc.language中文
dc.subject軸承故障診斷zh_TW
dc.subject多尺度熵zh_TW
dc.subject支持向量數據描述zh_TW
dc.subject非監督學習zh_TW
dc.subjectBearing fault diagnosisen_US
dc.subjectMulti-scale entropyen_US
dc.subjectSupport vector data descriptionen_US
dc.subjectUnsupervised learningen_US
dc.title基於多尺度熵與支持向量數據描述之軸承故障診斷系統zh_TW
dc.titleBearing fault diagnosis system based on multiscale entropy and support vector data descriptionen_US
dc.type學術論文

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
60773009H-40220.pdf
Size:
6.37 MB
Format:
Adobe Portable Document Format
Description:
學術論文

Collections