RuO2/Graphene/Polyaniline 複合材料之超級電容開發 Development of supercapacitors using RuO2/Graphene/Polyaniline composite materials

Cheng, Ke-Siang
Journal Title
Journal ISSN
Volume Title
本研究使用靜電紡絲(Electrospinning)與靜電噴霧(Electrospray)技術,製備奈米纖維,藉由熱處理製備碳奈米纖維,做為超級電容之電極。首先,本研究以聚苯乙烯(Polystyrene, PS)與聚苯胺(Polyaniline, PANi)作為複合溶液,製備出線徑約534 nm的PS:PANi奈米纖維。接著利用靜電噴霧技術,將石墨烯(Graphene)溶液沉積至PS:PANi纖維表面,製備出堆疊式PS:PANi:graphene奈米纖維,石墨烯片約為5 m能附著在PS:PANi奈米纖維薄膜,且不會造成底部PS:PANi奈米纖維形貌的變化;本研究也成功以靜電紡絲技術,將聚苯乙烯、聚苯胺以及石墨烯作為複合溶液,製備出線徑約418 nm的複合式PS:PANi:graphene奈米纖維;本研究利用靜電紡絲技術,將聚丙烯腈(Polyacrylonitrile, PAN)與聚苯胺作為複合溶液,藉由熱處理製備出線徑約690 nm的PAN:PANi碳奈米纖維。接著將聚丙烯腈、聚苯胺以及石墨烯作為複合溶液,藉由熱處理製備出線徑約400 nm的PAN:PANi:G碳奈米纖維;此外,製備PAN:PANi與PAN:PANi:G碳奈米纖維薄膜之導電率,分別為28.5 mS/cm與98.1 mS/cm,碳奈米纖維具有導電性。透過拉曼光譜分析石墨烯材料的D band、G band與2D band峰值,表示利用本研究的電紡絲技術已具備將石墨烯複合於碳奈米纖維之能力。最後,將封裝完成之超級電容元件進行循環伏安法量測,其中PS:PANi奈米纖維、堆疊式PS:PANi:graphene奈米纖維、複合式PS:PANi:graphene奈米纖維、PAN:PANi碳奈米纖維與PAN:PANi:G碳奈米纖維五種電極之比電容值,分別為0.032 F/g、0.025 F/g、0.023 F/g、151 F/g、61 F/g。實驗結果顯示,PAN:PANi碳奈米纖維相較於PS:PANi奈米纖維電極之比電容高出4700倍。由於聚丙烯腈、聚苯胺與石墨烯經由熱處理之碳奈米纖維,具有良好的導電性與高比表面積,可提升整體電容器之特性。
In this study, the electrospinning and electrospray techniques are used to prepare composite and carbon nanofibers, which are acted as the current collector and electrodes of supercapacitors. Firstly, Polystyrene (PS) and Polyaniline (PANi) are mixed as a composite solution, which is electrospun as PS:PANi nanofiber. The diameter of PS:PANi nanofiber is 534 nm. Then, graphene solution is deposited to prepare for PS:PANi:graphene nanofiber on the PS:PANi nanofiber membrane surface by electrospray techniques. Graphene sheet about 5 μm size can be attached PS:PANi naofiber, and can’t change PS:PANi naofiber morphology; In this study, the electrospinning techniques is used to prepare for composite PS:PANi:graphene nanofiber in PS, PANi, and graphene are mixed solution. The diameter of composite PS:PANi nanofiber is 418 nm; The fabrication process is that the Polyacrylonitrile (PAN) and PANi are mixed as a composite solution, which is electrospun and thermal treatment as PAN:PANi carobn nanofiber. The diameter of PAN:PANi carbon nanofiber is 690 nm. Then, the electrospinning techniques combing with a thermal treatment are used to prepare for PAN:PANi:G carbon nanofiber in PAN, PANi, and graphene are mixed solution. The diameter of PAN:PANi:G carbon nanofiber is 400 nm; Moreover, average electrical conductivity of PAN:PANi and PAN:PANi:G carbon nanofiber are 28.5 mS/cm and 98.1 mS/cm, respectively. By the Raman spectra measurement, the D band, G band and 2D band are obtained in PAN:PANi and PAN:PANi:G electrodes. It indicates the graphene is electrospun to the composite carbon nanofiber. Finally, cyclic voltammetry measurement of supercapacitors, the calculated specific capacitances (F/g) are 0.032 (PS:PANi), 0.025 (PS:PANi:graphene), 0.023 (composite PS:PANi:graphene), 151 (PAN:PANi) and 61 (PAN:PANi:G) under various carbon nanofiber of electrodes, respectively. The results show that the specific capacitances of PAN:PANi carbon nanofiber electrodes is 4700 times larger than PS:PANi nanofiber electrodes. Due to PAN, PANi and graphene via thermal treatment of carbon nanofiber with good electrical conductivity and high specific surface area can improve the characteristics of overall supercapacitors.
超級電容, 靜電紡絲技術, 聚苯胺, 石墨烯, supercapacitor, electrospinning, polyaniline (PANi), graphene