Please use this identifier to cite or link to this item:
Title: Contrast compensation by fuzzy classification and image illumination analysis for back-lit and front-lit color face images.
Authors: 國立臺灣師範大學機電工程學系
Tsai, Chun-Ming
Yeh, Zong-Mu
Issue Date: 1-Aug-2010
Publisher: Institute of Electrical and Electronics Engineers (IEEE)
Abstract: Conventional contrast enhancement methods have two shortcomings. First, most of them do not produce satisfactory enhancement results for face images with back-lit or front-lit. Second, most of them need transformation functions and parameters which are specified manually. Thus, this paper proposes an automatic and parameter-free contrast compensation algorithm for skin detection in color face images. This method includes following steps: First, RGB color space is transformed to YIQ color space. Second, fuzzy logic is used to classify the color images into three categories: back-lit, normal-lit, and front-lit. Third, image illumination analysis is used to analyze the image distribution. Fourth, the input image is compensated by piecewise linear based enhancement method. Finally, the compensation image is transformed back to RGB color space. Our experiments included various color and gray face images. Experiment results show that the performance of the proposed compensation method is better than other available methods in skin detection and visual perception measurements.
ISSN: 0098-3063
Other Identifiers: ntnulib_tp_E0402_01_018
Appears in Collections:教師著作

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.