Bitte benutzen Sie diese Kennung, um auf die Ressource zu verweisen:
Titel: H-inf.-observer-based adaptive fuzzy-neural control for a class of uncertain nonlinear systems
Autoren: 國立臺灣師範大學電機工程學系
Y.-G. Leu
W.-Y. Wang
T.-T. Lee
Erscheinungsdatum: 15-Okt-1999
Zusammenfassung: This paper presents a method for designing an H∞-observer-based adaptive fuzzy-neural output feedback control law with on-line tuning of fuzzy-neural weighting factors for a class of uncertain nonlinear systems based on the H∞ control technique and the strictly positive real Lyapunov (SPR-Lyapunov) design approach. The H∞-observer-based output feedback control law guarantees that all signals involved are bounded and provides the modeling error (and the external bounded disturbance) attenuation with H∞ performance, obtained by a Riccati-Like equation. Besides, the H∞-observer-based output feedback control law doesn't require the assumptions of the total system states available for measurement and the uncertain system nonlinearities only restricted to the system output. Finally, an example is simulated in order to confirm the effectiveness and applicability of the proposed methods
Sonstige Kennungen: ntnulib_tp_E0604_02_088
Enthalten in den Sammlungen:教師著作

Dateien zu dieser Ressource:
Es gibt keine Dateien zu dieser Ressource.

Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt, soweit nicht anderweitig angezeigt.