Please use this identifier to cite or link to this item:
Title: A composite controller for unknown nonlinear dynamical systems using robust adaptive fuzzy-neural control schemes
Authors: 國立臺灣師範大學電機工程學系
W.-Y. Wang
C.-C. Hsu
Y.-G. Leu
Issue Date: 27-Sep-2000
Abstract: A robust adaptive fuzzy-neural control scheme for nonlinear dynamical systems is proposed to attenuate the effects caused by unmodeled dynamics, disturbance and modeling errors. A composite update law, which has a generalized form combining the projection algorithm modification and the switching-σ adaptive law, is used to tune the adjustable parameters for preventing parameter drift and confining states of the system into the specified regions. Moreover, a fuzzy variable structure control method is incorporated into the control law so that the derived controller is robust with respect to unmodeled dynamics, disturbances and modeling errors. Compared with previous control schemes for nonlinear systems, the magnitude of the control input by using the proposed approach is much smaller, which is a significant advantage in designing controllers for practical applications. To demonstrate the effectiveness and applicability of the proposed method, several examples are illustrated in the paper
Other Identifiers: ntnulib_tp_E0604_02_087
Appears in Collections:教師著作

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.