Please use this identifier to cite or link to this item: http://rportal.lib.ntnu.edu.tw:80/handle/77345300/32051
Title: 最佳化B-spline神經網路近似非線性函數-使用基因演算法
Authors: 國立臺灣師範大學電機工程學系
張貞觀
王偉彥
Issue Date: 14-Mar-2003
Abstract: 在本文中,吾人提出一種利用最佳化B-spline類神經網路來近似非線性函數的方法。傳統的B-spline函數是固定基礎函數,然而本文是利用基因演算法來對 B-spline類神經網路的基礎函數及控制點做最佳化的調整。而且基因演算法可以藉由突變的運算,跳脫一般學習法則(如梯度下降法)在學習過程中可能會落入區域極值,無法找到系統的最佳值的問題。染色體由實數的方式組成,包括了B-spline類神經網路中的Knot向量及控制點。藉著B-spline區間調整的特性,使系統作細微的調整。最後以模擬例子驗證本論文方法的功效。
In this paper, we propose an optimal B-spline neural network to approximate a nonlinear function. Traditionally, a B-spline function has fixed-form blending functions. Genetic algorithms are used to optimize the blending functions and the control points of B-spline neural networks. The mutation operator in genetic algorithms can avoid falling into local minimum during the learning process. Chromosomes include the knot vectors and the control points of a B-spline neural network. Since the local tuning property, the fine-tuning ability of a B-spline neural network can be obtained. Finally, the simulation results demonstrate the effectiveness of the proposed method.
URI: http://rportal.lib.ntnu.edu.tw/handle/77345300/32051
Other Identifiers: ntnulib_tp_E0604_02_074
Appears in Collections:教師著作

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.